Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

Article 

Google Scholar
 

Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

Article 

Google Scholar
 

Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

Article 
PubMed 

Google Scholar
 

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

Article 
PubMed 

Google Scholar
 

Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

Article 
PubMed 

Google Scholar
 

Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

Article 
PubMed 

Google Scholar
 

Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).


Google Scholar
 

Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

Article 
PubMed 

Google Scholar
 

Manetsch, H. J. et al. A tweezer array with 6,100 highly coherent atomic qubits. Nature 647 ,60–67 (2025).

Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

Article 
PubMed 

Google Scholar
 

Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

Article 
PubMed 

Google Scholar
 

Huang, X. et al. Metasurface holographic optical traps for ultracold atoms. Prog. Quantum Electron. 89, 100470 (2023).

Article 

Google Scholar
 

Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

Article 

Google Scholar
 

Morgado, M. & Whitlock, S. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021).

Article 

Google Scholar
 

Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

Article 

Google Scholar
 

Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

Article 
PubMed 

Google Scholar
 

Singh, K., Anand, S., Pocklington, A., Kemp, J. T. & Bernien, H. Dual-element, two-dimensional atom array with continuous-mode operation. Phys. Rev. X 12, 011040 (2022).


Google Scholar
 

Sheng, C. et al. Defect-free arbitrary-geometry assembly of mixed-species atom arrays. Phys. Rev. Lett. 128, 083202 (2022).

Article 
PubMed 

Google Scholar
 

Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

Article 

Google Scholar
 

Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

Article 
MathSciNet 
PubMed 

Google Scholar
 

Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

Article 
MathSciNet 
PubMed 

Google Scholar
 

Yan, Z. et al. Superradiant and subradiant cavity scattering by atom arrays. Phys. Rev. Lett. 131, 253603 (2023).

Article 
PubMed 

Google Scholar
 

Asenjo-Garcia, A., Moreno-Cardoner, M., Albrecht, A., Kimble, H. J. & Chang, D. E. Exponential improvement in photon storage fidelities using subradiance and ‘selective radiance’ in atomic arrays. Phys. Rev. X 7, 031024 (2017).


Google Scholar
 

Holzinger, R., Peter, J. S., Ostermann, S., Ritsch, H. & Yelin, S. Harnessing quantum emitter rings for efficient energy transport and trapping. Opt. Quantum 2, 57–63 (2024).

Article 

Google Scholar
 

Masson, S. J., Covey, J. P., Will, S. & Asenjo-Garcia, A. Dicke superradiance in ordered arrays of multilevel atoms. PRX Quantum 5, 010344 (2024).

Article 

Google Scholar
 

Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

Article 

Google Scholar
 

Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

Article 

Google Scholar
 

Elliott, E. R. et al. Quantum gas mixtures and dual-species atom interferometry in space. Nature 623, 502–508 (2023).

Article 
PubMed 

Google Scholar
 

Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

Article 
PubMed 

Google Scholar
 

Burgers, A. P. et al. Controlling Rydberg excitations using ion-core transitions in alkaline-earth atom-tweezer arrays. PRX Quantum 3, 020326 (2022).

Article 

Google Scholar
 

Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

Article 
PubMed 

Google Scholar
 

Kim, D. et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt. Lett. 44, 3178–3181 (2019).

Article 
PubMed 

Google Scholar
 

Wang, Y. et al. Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays. npj Quantum Inf. 6, 54 (2020).

Article 

Google Scholar
 

Huft, P. et al. Simple, passive design for large optical trap arrays for single atoms. Phys. Rev. A 105, 063111 (2022).

Article 

Google Scholar
 

Pause, L. et al. Supercharged two-dimensional tweezer array with more than 1000 atomic qubits. Optica 11, 222–226 (2024).

Article 

Google Scholar
 

Fong, B. H., Colburn, J. S., Ottusch, J. J., Visher, J. L. & Sievenpiper, D. F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).

Article 

Google Scholar
 

Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012).

Article 
PubMed 

Google Scholar
 

Atikian, H. A. et al. Diamond mirrors for high-power continuous-wave lasers. Nat. Commun. 13, 2610 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

Article 
PubMed 

Google Scholar
 

Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

Article 
PubMed 

Google Scholar
 

Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

Article 
PubMed 

Google Scholar
 

Huang, H. et al. Leaky-wave metasurfaces for integrated photonics. Nat. Nanotechnol. 18, 580–588 (2023).

Article 
PubMed 

Google Scholar
 

Hsu, T.-W. et al. Single-atom trapping in a metasurface-lens optical tweezer. PRX Quantum 3, 030316 (2022).

Article 

Google Scholar
 

Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

Article 
PubMed 

Google Scholar
 

Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

Article 

Google Scholar
 

Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

Article 
PubMed 

Google Scholar
 

Park, J.-S. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18, 3187–3198 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zelevinsky, T. et al. Narrow line photoassociation in an optical lattice. Phys. Rev. Lett. 96, 203201 (2006).

Article 
PubMed 

Google Scholar
 

Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).


Google Scholar
 

Gyger, F. et al. Continuous operation of large-scale atom arrays in optical lattices. Phys. Rev. Res. 6, 033104 (2024).

Article 

Google Scholar
 

Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

Article 
PubMed 

Google Scholar
 

Nogrette, F. et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014).


Google Scholar
 

Schymik, K.-N. et al. In situ equalization of single-atom loading in large-scale optical tweezer arrays. Phys. Rev. A 106, 022611 (2022).

Article 

Google Scholar
 

Chew, Y. T. et al. Ultraprecise holographic optical tweezer array. Phys. Rev. A 110 ,053518 (2024).

Malek, S. C., Overvig, A. C., Alù, A. & Yu, N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl. 11, 246 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

Wu, Y., Yang, W., Fan, Y., Song, Q. & Xiao, S. TiO2 metasurfaces: from visible planar photonics to photochemistry. Sci. Adv. 5, eaax0939 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen, W. T. et al. Dispersion-engineered metasurfaces reaching broadband 90% relative diffraction efficiency. Nat. Commun. 14, 2544 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Malek, S. C., Xu, Y. & Yu, N. Visible-spectrum wavelength-selective metalenses based on quasi-bound states in the continuum. In Conference on Lasers and Electro-Optics (CLEO) 2023 1–2 (IEEE, 2023); https://doi.org/10.1364/CLEO_FS.2023.FTh5B.8.

Nejadriahi, H. et al. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications. Opt. Express 28, 24951–24960 (2020).

Article 
PubMed 

Google Scholar
 

Fan, Z.-B. et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl. 10, 014005 (2018).

Article 

Google Scholar
 

Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).


Google Scholar
 

Johansson, M. & Bengtsson, J. Robust design method for highly efficient beam-shaping diffractive optical elements using an iterative-Fourier-transform algorithm with soft operations. J. Mod. Opt. 47, 1385–1398 (2000).

Article 

Google Scholar
 

Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007).

Article 
PubMed 

Google Scholar
 

Fan, Q. et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett. 125, 267402 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lim, S. W. D. et al. Point singularity array with metasurfaces. Nat. Commun. 14, 3237 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jammi, S. et al. Three-dimensional, multi-wavelength beam formation with integrated metasurface optics for Sr laser cooling. Opt. Lett. 49, 6013–6016 (2024).

Article 
PubMed 

Google Scholar
 

Zaidi, A. et al. Metasurface-enabled single-shot and complete mueller matrix imaging. Nat. Photon. 18, 704–712 (2024).

Dainese, P. et al. Shape optimization for high efficiency metasurfaces: theory and implementation. Light Sci. Appl. 13, 300 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

He, T. et al. Perfect anomalous refraction metasurfaces empowered half-space optical beam scanning. Nat. Commun. 16, 3115 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kwon, M. et al. Jet-loaded cold atomic beam source for strontium. Rev. Sci. Instrum. 94, 013202 (2023).

Article 
PubMed 

Google Scholar
 

Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).


Google Scholar