Ferguson, G. et al. Crustal Groundwater Volumes Greater Than Previously Thought. Geophys Res Lett. 48, e2021GL093549 (2021).
Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).
Fan, Y., Li, H. & Miguez-Macho, G. Global Patterns of Groundwater Table Depth. Science 339, 940–943 (2013).
de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).
Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).
Wada, Y. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surv. Geophys 37, 419–451 (2016).
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res 48, W00L06 (2012).
Condon, L. E. et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res 57, e2020WR029500 (2021).
Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and Storage in Groundwater Systems. Science 296, 1985–1990 (2002).
Haitjema, H. M. & Mitchell-Bruker, S. Are Water Tables a Subdued Replica of the Topography? Groundwater 43, 781–786 (2005).
Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J. & Huete, A. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19, 4229–4256 (2015).
Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res. 48 https://doi.org/10.1029/2012WR012319 (2012).
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. 114, 10572 (2017).
Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. (2018).
Cooley, D., Maxwell, R. M. & Smith, S. M. Center Pivot Irrigation Systems and Where to Find Them: A Deep Learning Approach to Provide Inputs to Hydrologic and Economic Models. Front. Water 3 (2021).
Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens Environ. 192, 198–216 (2017).
Rodell, M. et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159–166 (2007).
Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).
Castellazzi, P., Martel, R., Galloway, D. L., Longuevergne, L. & Rivera, A. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations. Groundwater 54, 768–780 (2016).
Naz, B. S., Sharples, W., Ma, Y., Goergen, K. & Kollet, S. Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe. Geosci. Model Dev. 16, 1617–1639 (2023).
Refsgaard, J. C., Stisen, S. & Koch, J. Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development. Hydrol. Process 36, e14463 (2022).
Gleeson, T. et al. GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).
Fan, Y. et al. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resour. Res. 55, 1737–1772 (2019).
Clark, M. P. et al. Improving the theoretical underpinnings of process-based hydrologic models. Water Resour. Res. 52, 2350–2365 (2016).
Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res 54, 8558–8593 (2018).
Ransom, K. M. et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 601-602, 1160–1172 (2017).
Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K. & Fram, M. S. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Sci. Total Environ. 807, 151065 (2022).
Ma, Y. et al. Water Table Depth Estimates over the Contiguous United States Using a Random Forest Model. Groundwater n/a https://doi.org/10.1111/gwat.13362 (2023).
Koch, J., Berger, H., Henriksen, H. J. & Sonnenborg, T. O. Modelling of the shallow water table at high spatial resolution using random forests. Hydrol. Earth Syst. Sci. 23, 4603–4619 (2019).
Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res.-Atmos. 112, – (2007).
Maxwell, R. M., Condon, L. E. & Kollet, S. J. A. high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 1–15 (2015).
Tijerina-Kreuzer, D. et al. Continental Scale Hydrostratigraphy: Basin-Scale Testing of Alternative Data-Driven Approaches. Groundwater n/a https://doi.org/10.1111/gwat.13357 (2023).
Ferguson, G. et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge. Commun. Earth Environ. 4, 48 (2023).
Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res 51, 5198–5216 (2015).
Ferguson, G., McIntosh, J. C., Perrone, D. & Jasechko, S. Competition for shrinking window of low salinity groundwater. Environ. Res. Lett. 13, 114013 (2018).
Jurgens, B. C. et al. Over a third of groundwater in USA public-supply aquifers is Anthropocene-age and susceptible to surface contamination. Commun. Earth Environ. 3, 153 (2022).
Nace, R. L. Water Management, Agriculture, and Ground-Water Supplies. 12 (US Geological Survey, 1960).
Nace, R. L. in Introduction to Geographical Hydrology (ed R. J. Chorley) 31-47 (Methuen and Co., 1969).
Garmonov, I.V., Konoplyantsev, K. P. V., A.A., Lushnikova, N.P. in World Water Balance and Water Resources of the Earth (ed V. I. Korzun) Ch. 3.6, 50 (UNESCO Press, 1978).
Bonotto, G., Peterson, T. J., Fowler, K. & Western, A. W. Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping. Water Resour. Res. 58, e2021WR030231 (2022).
Fan, Y. Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).
Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).
Macdonald, D., Dixon, A., Newell, A. & Hallaways, A. Groundwater flooding within an urbanised flood plain. J. Flood Risk Manag. 5, 68–80 (2012).
Gorelick, S. M. & Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 51, 3031–3051 (2015).
Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).