Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys.: Condens. Matter 33, 353001 (2021).
de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).
Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys.: Mater. 3, 042006 (2020).
Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).
Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).
Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).
Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).
Claassen, M., Jia, C., Moritz, B. & Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).
Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).
McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).
Aeschlimann, S. et al. Survival of Floquet-Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).
Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).
Park, S. et al. Steady Floquet-Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).
Kobayashi, Y. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023).
Uchida, K., Kusaba, S., Nagai, K., Ikeda, T. N. & Tanaka, K. Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe2. Sci. Adv. 8, eabq7281 (2022).
Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).
Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).
Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta. Phys. Rev. B 102, 161403 (2020).
Hübener, H., De Giovannini, U. & Rubio, A. Phonon driven Floquet matter. Nano Lett. 18, 1535–1542 (2018).
Zhang, R.-X. & Das Sarma, S. Anomalous Floquet chiral topological superconductivity in a topological insulator sandwich structure. Phys. Rev. Lett. 127, 067001 (2021).
Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant self-driven exciton-Floquet signatures in time-resolved photoemission spectroscopy of MoS2 from time-dependent GW approach. Proc. Natl Acad. Sci. USA 120, e2301957120 (2023).
Perfetto, E. & Stefanucci, G. Floquet topological phase of nondriven p-wave nonequilibrium excitonic insulators. Phys. Rev. Lett. 125, 106401 (2020).
Liu, R.-Y. et al. Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy. Sci. Rep. 7, 15981 (2017).
Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. Pump driven normal-to-excitonic insulator transition: Josephson oscillations and signatures of BEC-BCS crossover in time-resolved ARPES. Phys. Rev. Mater. 3, 124601 (2019).
Ito, S. et al. Build-up and dephasing of Floquet-Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).
Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).
Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).
Parmenter, R. H. & Henson, W. R. Superconductive properties of the excitonic insulator. Phys. Rev. 2, 140–147 (1970).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Bussolotti, F., Yang, J., Kawai, H., Chee, J. Y. & Goh, K. E. J. Influence of many-body effects on hole quasiparticle dynamics in a WS2 monolayer. Phys. Rev. B 103, 045412 (2021).
Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020).
Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).
Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).
Schönhense, G., Medjanik, K. & Elmers, H.-J. Space-, time- and spin-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 200, 94–118 (2015).
Medjanik, K. et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017).
Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016).
Grubišić Čabo, A. et al. Observation of ultrafast free carrier dynamics in single layer MoS2. Nano Lett. 15, 5883–5887 (2015).
Liu, F., Ziffer, M. E., Hansen, K. R., Wang, J. & Zhu, X. Direct determination of band-gap renormalization in the photoexcited monolayer MoS2. Phys. Rev. Lett. 122, 246803 (2019).
Liu, F., Li, Q. & Zhu, X.-Y. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405 (2020).
Lin, Y. et al. Exciton-driven renormalization of quasiparticle band structure in monolayer MoS2. Phys. Rev. B 106, L081117 (2022).
Wallauer, R. et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).
Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).
Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).
Karni, O., Esin, I. & Dani, K. M. Through the lens of a momentum microscope: viewing light-induced quantum phenomena in 2D materials. Adv. Mater. 35, e2204120 (2022).
Jakubczyk, T. et al. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater. 5, 031007 (2018).
Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).
Kwong, N. H., Rupper, G. & Binder, R. Self-consistent T-matrix theory of semiconductor light-absorption and luminescence. Phys. Rev. B 79, 155205 (2009).
Yoshioka, T. & Asano, K. Classical-quantum crossovers in quasi-one-dimensional electron-hole systems: exciton-Mott physics and interband optical spectra. Phys. Rev. B 86, 115314 (2012).
Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys. Rev. B 94, 245303 (2016).
Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).
Attaccalite, C., Grüning, M. & Marini, A. Real-time approach to the optical properties of solids and nanostructures: time-dependent Bethe-Salpeter equation. Phys. Rev. B 84, 245110 (2011).
Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions. Proc. Natl Acad. Sci. USA 118, e1906938118 (2021).
Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).
Ruppert, C., Chernikov, A., Hill, H. M., Rigosi, A. F. & Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 17, 644–651 (2017).
Morita, Y., Yoshioka, K. & Kuwata-Gonokami, M. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor. Nat. Commun. 13, 5388 (2022).
Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
Murotani, Y. et al. Light-driven electron-hole Bardeen-Cooper-Schrieffer-like state in bulk GaAs. Phys. Rev. Lett. 123, 197401 (2019).
Perfetto, E., Bianchi, S. & Stefanucci, G. Time-resolved ARPES spectra of nonequilibrium excitonic insulators: revealing macroscopic coherence with ultrashort pulses. Phys. Rev. B 101, 041201 (2020).
Glutsch, S. & Zimmermann, R. Coherent optics for pumping near the absorption edge. Phys. Rev. B 45, 5857–5862 (1992).
Chu, H. & Chang, Y. C. Theory of optical spectra of exciton condensates. Phys. Rev. B 54, 5020–5028 (1996).
Östreich, T. & Schönhammer, K. Non-stationary excitonic-insulator states in photoexcited semiconductors. Z. Phys. B 91, 189–197 (1993).
Liu, D. E., Levchenko, A. & Baranger, H. U. Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems. Phys. Rev. Lett. 111, 047002 (2013).
Giovannini, U. D. & Hübener, H. Floquet analysis of excitations in materials. J. Phys.: Mater. 3, 012001 (2020).
Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).
McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).
Medina Silva, H. & Goh, K. E. J. A blade structure to direct precursor gases for the growth of uniform large area TMDCS. Patent no. WO/2022/186776, Singapore (2022).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).
Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).
Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).
da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).
Rocca, D., Lu, D. & Galli, G. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 133, 164109 (2010).
Rabani, E., Baer, R. & Neuhauser, D. Time-dependent stochastic Bethe-Salpeter approach. Phys. Rev. B 91, 235302 (2015).
Stefanucci, G. & van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge Univ. Press, 2025).