Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).
Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).
Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).
Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).
Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982).
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).
Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).
Park, H. et al. Ferromagnetism and topology of the higher flat band in a fractional Chern insulator. Nat. Phys. 21, 549–555 (2025).
Xu, F. et al. Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2. Nat. Phys. 21, 542–548 (2025).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Lu, Z. et al. Extended quantum anomalous Hall states in graphene/hBN moiré superlattices. Nature 637, 1090–1095 (2025).
Choi, Y. et al. Superconductivity and quantized anomalous Hall effect in rhombohedral graphene. Nature 639, 342–347 (2025).
Xie, J. et al. Tunable fractional Chern insulators in rhombohedral graphene superlattices. Nat. Mater. 24, 1042–1048 (2025).
Aronson, S. H. et al. Displacement field-controlled fractional Chern insulators and charge density waves in a graphene/hBN moiré superlattice. Phys. Rev. X 15, 031026 (2025).
Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).
Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).
Chung, Y. J. et al. Ultra-high-quality two-dimensional electron systems. Nat. Mater. 20, 632–637 (2021).
Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).
Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature 637, 833–838 (2024).
Knüppel, P. et al. Correlated states controlled by a tunable van Hove singularity in moiré WSe2 bilayers. Nat. Commun. 16, 1959 (2025).
Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).
Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).
Anderson, E. et al. Magnetoelectric control of helical light emission in a moiré Chern magnet. Phys. Rev. X 15, 031057 (2025).
Schulze-Wischeler, F., Mariani, E., Hohls, F. & Haug, R. J. Direct measurement of the g factor of composite fermions. Phys. Rev. Lett. 92, 156401 (2004).
Gonçalves, M. et al. Spinless and spinful charge excitations in moiré fractional Chern insulators. Preprint at http://arxiv.org/abs/2506.05330 (2025).
Girvin, S., MacDonald, A. & Platzman, P. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 33, 2481 (1986).
Pinczuk, A., Dennis, B., Pfeiffer, L. & West, K. Observation of collective excitations in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 3983 (1993).
Nakajima, T. & Aoki, H. Composite-fermion picture for the spin-wave excitation in the fractional quantum Hall system. Phys. Rev. Lett. 73, 3568 (1994).
Halperin, B. I., Lee, P. A. & Read, N. Theory of the half-filled Landau level. Phys. Rev. B 47, 7312 (1993).
Stern, A. & Halperin, B. I. Singularities in the Fermi-liquid description of a partially filled Landau level and the energy gaps of fractional quantum Hall states. Phys. Rev. B 52, 5890 (1995).
Nayak, C. & Wilczek, F. Non-Fermi liquid fixed point in 2 + 1 dimensions. Nucl. Phys. B 417, 359–373 (1994).
Morf, R., d’Ambrumenil, N. & Sarma, S. D. Excitation gaps in fractional quantum Hall states: an exact diagonalization study. Phys. Rev. B 66, 075408 (2002).
Boebinger, G. et al. Activation energies and localization in the fractional quantum Hall effect. Phys. Rev. B 36, 7919 (1987).
Willett, R., Stormer, H., Tsui, D., Gossard, A. & English, J. Quantitative experimental test for the theoretical gap energies in the fractional quantum Hall effect. Phys. Rev. B 37, 8476 (1988).
Du, R., Stormer, H., Tsui, D., Pfeiffer, L. & West, K. Experimental evidence for new particles in the fractional quantum Hall effect. Phys. Rev. Lett. 70, 2944 (1993).
Manoharan, H., Shayegan, M. & Klepper, S. Signatures of a novel Fermi liquid in a two-dimensional composite particle metal. Phys. Rev. Lett. 73, 3270 (1994).
Villegas Rosales, K. et al. Fractional quantum Hall effect energy gaps: role of electron layer thickness. Phys. Rev. Lett. 127, 056801 (2021).
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).
Angeli, M. & MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proc. Natl Acad. Sci. USA 118, e2021826118 (2021).
Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).
Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).
Xu, C., Li, J., Xu, Y., Bi, Z. & Zhang, Y. Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe2. Proc. Natl Acad. Sci. USA 121, e2316749121 (2024).
Abouelkomsan, A., Reddy, A. P., Fu, L. & Bergholtz, E. J. Band mixing in the quantum anomalous Hall regime of twisted semiconductor bilayers. Phys. Rev. B 109, L121107 (2024).
Éfros, A. L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49 (1975).
Shklovskii, B. I. & Efros, A. L. in Electronic Properties of Doped Semiconductors 202–227 (Springer Nature, 1984).
Wang, M., Wang, X. & Vafek, O. Phase diagram of twisted bilayer MoTe2 in a magnetic field with an account for the electron–electron interaction. Phys. Rev. B 110, L201107 (2024).
Zhang, S. et al. VASP2KP: k⋅p models and Landé g-factors from ab initio calculations. Chin. Phys. Lett. 40, 127101 (2023).