Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

Article 
CAS 
ADS 

Google Scholar
 

Tinkham, M. Introduction to Superconductivity (Dover Publications, 1996).

Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

Article 
MathSciNet 
CAS 
ADS 

Google Scholar
 

Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

Article 
CAS 
ADS 

Google Scholar
 

Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Basov, D. N. & Timusk, T. Electrodynamics of high-Tc superconductors. Rev. Mod. Phys. 77, 721–779 (2005).

Article 
CAS 
ADS 

Google Scholar
 

Tachiki, M., Koyama, T. & Takahashi, S. Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. Phys. Rev. B 50, 7065–7084 (1994).

Article 
CAS 
ADS 

Google Scholar
 

Tamasaku, K., Nakamura, Y. & Uchida, S. Charge dynamics across the CuO2 planes in La2−xSrxCuO4. Phys. Rev. Lett. 69, 1455–1458 (1992).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Kadowaki, K. et al. Longitudinal Josephson-plasma excitation in Bi2Sr2CaCu2O8+δ: direct observation of the Nambu-Goldstone mode in a superconductor. Phys. Rev. B 56, 5617–5621 (1997).

Article 
CAS 
ADS 

Google Scholar
 

Corson, J., Orenstein, J., Oh, S., O’Donnell, J. & Eckstein, J. N. Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 85, 2569–2572 (2000).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Higgs, P. W. Broken symmetries, massless particles and gauge fields. Phys. Rev. Lett. 12, 132–133 (1964).

Article 

Google Scholar
 

Nambu, Y. Energy gap, mass gap, and spontaneous symmetry breaking. Int. J. Mod. Phys. A 25, 4141–4148 (2010).

Article 
CAS 
ADS 

Google Scholar
 

Pekker, D. & Varma, C. M. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

Article 
CAS 
ADS 

Google Scholar
 

Volkov, A. F. & Kogan, S. M. Collisionless relaxation of the energy gap in superconductors. Zh. Eksp. Teor. Fiz. 65, 2038–2046 (1973).


Google Scholar
 

Matsunaga, R. et al. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Phys. Rev. Lett. 111, 057002 (2013).

Article 
PubMed 
ADS 

Google Scholar
 

Katsumi, K. et al. Higgs mode in the d-wave superconductor Bi2Sr2CaCu2O8+x driven by an intense terahertz pulse. Phys. Rev. Lett. 120, 117001 (2018).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Nambu, Y. Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960).

Article 
MathSciNet 
ADS 

Google Scholar
 

Anderson, P. W. Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).

Article 
MathSciNet 
ADS 

Google Scholar
 

Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).

Article 
MathSciNet 
CAS 
ADS 

Google Scholar
 

Fertig, H. A. & Das Sarma, S. Collective modes in layered superconductors. Phys. Rev. Lett. 65, 1482–1485 (1990).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

Article 
ADS 

Google Scholar
 

Sun, Z., Fogler, M. M., Basov, D. N. & Millis, A. J. Collective modes and terahertz near-field response of superconductors. Phys. Rev. Res. 2, 023413 (2020).

Article 
CAS 

Google Scholar
 

Richards, D., Zayats, A., Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. A 362, 787–805 (2004).

Article 

Google Scholar
 

Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 56, 223001 (2023).

Article 
CAS 
ADS 

Google Scholar
 

Dunmore, F. J. et al. Observation of below-gap plasmon excitations in superconducting YBa2Cu3O7 films. Phys. Rev. B 52, R731–R734 (1995).

Article 
CAS 
ADS 

Google Scholar
 

Stiewe, F.-F. et al. Spintronic emitters for super-resolution in THz-spectral imaging. Appl. Phys. Lett. 120, 032406 (2022).

Article 
CAS 
ADS 

Google Scholar
 

Handa, T. et al. Terahertz emission from giant optical rectification in a van der Waals material. Nat. Mater. 24, 1203–1208 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Blanchard, F. et al. Real-time terahertz near-field microscope. Opt. Express 19, 8277–8284 (2011).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Chen, S.-C. et al. Ghost spintronic THz-emitter-array microscope. Light Sci. Appl. 9, 99 (2020).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Mitra, S., Avazpour, L. & Knezevic, I. Terahertz conductivity of two-dimensional materials: a review. J. Phys. Condens. Matter 37, 133005 (2025).

Article 
CAS 
ADS 

Google Scholar
 

Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).

Article 
CAS 
ADS 

Google Scholar
 

Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 1999).

Michael, M. H. et al. Resolving self-cavity effects in two-dimensional quantum materials. Preprint at https://doi.org/10.48550/arXiv.2505.12799 (2025).

Dressel, M. & Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).

Article 
ADS 

Google Scholar
 

Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

Article 
ADS 

Google Scholar
 

Molegraaf, H. J. A., Presura, C., van der Marel, D., Kes, P. H. & Li, M. Superconductivity-induced transfer of in-plane spectral weight in Bi2Sr2CaCu2O8+δ. Science 295, 2239–2241 (2002).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Jacobs, T., Sridhar, S., Li, Q., Gu, G. D. & Koshizuka, N. In-plane and c-axis microwave penetration depth of Bi2Sr2CaCu2O8+δ crystals. Phys. Rev. Lett. 75, 4516–4519 (1995).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

Article 
CAS 
ADS 

Google Scholar
 

Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181 (1973).

Article 
CAS 
ADS 

Google Scholar
 

Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films. Rev. Mod. Phys. 59, 1001–1066 (1987).

Article 
CAS 
ADS 

Google Scholar
 

Lee, W. S. et al. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Pearl, J. Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964).

Article 
ADS 

Google Scholar
 

Brandt, E. H. Vortex-vortex interaction in thin superconducting films. Phys. Rev. B 79, 134526 (2009).

Article 
ADS 

Google Scholar
 

Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar