Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Suhl, H. Dispersion theory of the Kondo effect. Phys. Rev. 138, A515–A523 (1965).

Article 
ADS 
MathSciNet 

Google Scholar
 

Abrikosov, A. A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Phys. Phys. Fiz. 2, 5–20 (1965).

MathSciNet 
CAS 

Google Scholar
 

Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

Batlle-Porro, S. et al. Cryo-near-field photovoltage microscopy of heavy-fermion twisted symmetric trilayer graphene. Preprint at http://arxiv.org/abs/2402.12296 (2024).

Ghosh, A. et al. Thermopower probes of emergent local moments in magic-angle twisted bilayer graphene. Nat. Phys. 21, 732–739 (2025).

Article 
CAS 

Google Scholar
 

Călugăru, D. et al. The thermoelectric effect and its natural heavy fermion explanation in twisted bilayer and trilayer graphene. Preprint at http://arxiv.org/abs/2402.14057 (2024).

Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Lei, C., Linhart, L., Qin, W., Libisch, F. & MacDonald, A. H. Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Phys. Rev. B 104, 035139 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Carr, S. et al. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

Article 
CAS 

Google Scholar
 

Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jiao, L. et al. Magnetic and defect probes of the SmB6 surface state. Sci. Adv. 4, eaau4886 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at http://arxiv.org/abs/1308.1085 (2013).

Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat Commun. 9, 3324 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rai, G. et al. Dynamical correlations and order in magic-angle twisted bilayer graphene. Phys. Rev. X 14, 031045 (2024).

CAS 

Google Scholar
 

Calderón, M. J., Camjayi, A., Datta, A. & Bascones, E. Cascades in transport and optical conductivity of twisted bilayer graphene. Phys. Rev. B 112, L041126 (2025).

Article 
ADS 

Google Scholar
 

Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller, H. & Parkin, S.) (Wiley, 2007).

Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

CAS 

Google Scholar
 

Herzog-Arbeitman, J. et al. Heavy fermions as an efficient representation of atomistic strain and relaxation in twisted bilayer graphene. Preprint at http://arxiv.org/abs/2405.13880 (2025).

Herzog-Arbeitman, J. et al. Kekulé spiral order from strained topological heavy fermions. Phys. Rev. B 112, 125129 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Bagchi, M. et al. Spin-polarized scanning tunneling microscopy measurements of an Anderson impurity. Phys. Rev. Lett. 133, 246701 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, X. & Vafek, O. Theory of correlated Chern insulators in twisted bilayer graphene. Phys. Rev. X 14, 021042 (2024).

CAS 

Google Scholar
 

Deutscher, G. Andreev–Saint-James reflections: a probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).

Article 
ADS 
CAS 

Google Scholar
 

Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

Article 
ADS 
CAS 

Google Scholar
 

Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

Article 
CAS 

Google Scholar
 

Zhou, Z. et al. Double-dome unconventional superconductivity in twisted trilayer graphene. Preprint at http://arxiv.org/abs/2404.09909 (2024).

Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene with competing magnetic order and moiré inhomogeneities. Nat. Mater. 24, 1400–1406 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Park, J. M., Sun, S., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Experimental evidence for nodal superconducting gap in moiré graphene. Science 391, 79–83 (2025).

Article 
PubMed 

Google Scholar
 

Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

Article 
CAS 

Google Scholar
 

Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Lewandowski, C., Lantagne-Hurtubise, É., Thomson, A., Nadj-Perge, S. & Alicea, J. Andreev reflection spectroscopy in strongly paired superconductors. Phys. Rev. B 107, L020502 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Sainz-Cruz, H., Pantaleón, P. A., Phong, V. T., Jimeno-Pozo, A. & Guinea, F. Junctions and superconducting symmetry in twisted bilayer graphene. Phys. Rev. Lett. 131, 016003 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sukhachov, P. O., Von Oppen, F. & Glazman, L. I. Andreev reflection in scanning tunneling spectroscopy of unconventional superconductors. Phys. Rev. Lett. 130, 216002 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Biswas, S., Suman, S., Randeria, M. & Sensarma, R. Andreev versus tunneling spectroscopy of unconventional flat-band superconductors. Proc. Natl Acad. Sci. 122, e2509881122 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhou, G.-D., Wang, Y.-J., Tong, N. & Song, Z.-D. Kondo phase in twisted bilayer graphene. Phys. Rev. B 109, 045419 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Kim, H. Raw data: resolving intervalley gaps and many-body resonances in moire superconductor. Zenodo https://doi.org/10.5281/zenodo.17884628 (2025).

Călugăru D. et al. Obtaining the spectral function of moiré graphene heavy-fermions using iterative perturbation theory. Preprint at https://arxiv.org/abs/2509.18256 (2025).