Fuso Nerini, F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).

Article 

Google Scholar
 

Plazas-Niño, F., Tan, N., Howells, M., Foster, V. & Quirós-Tortós, J. Uncovering the applications, developments and future research directions of the open-source energy modelling system (OSeMOSYS): a systematic literature review. Energy Sustain. Dev. 85, 101629 (2025).

Article 

Google Scholar
 

Waisman, H. et al. A pathway design framework for national low greenhouse gas emission development strategies. Nat. Clim. Change 9, 261–268 (2019).

Article 

Google Scholar
 

Tesfamichael, M. & Fuchs, J. Navigating complexity: integrating political realities into energy system modelling for effective policy in sub-Saharan Africa. Prog. Energy 6, 043001 (2024).

Article 

Google Scholar
 

Mulugetta, Y. et al. Africa needs context-relevant evidence to shape its clean energy future. Nat. Energy 7, 1015–1022 (2022).

Article 

Google Scholar
 

Fuchs, J. L., Tesfamichael, M., Clube, R. & Tomei, J. How does energy modelling influence policymaking? Insights from low- and middle-income countries. Renew. Sustain. Energy Rev. 203, 114726 (2024).

Article 

Google Scholar
 

Süsser, D. et al. Why energy models should integrate social and environmental factors: assessing user needs, omission impacts and real-word accuracy in the European Union. Energy Res. Soc. Sci. 92, 102775 (2022).

Article 

Google Scholar
 

Dioha, M. O., Montgomery, M., Almada, R., Dato, P. & Abrahams, L. Beyond dollars and cents: why socio-political factors matter in energy system modeling. Environ. Res. Lett. 18, 121002 (2023).

Article 

Google Scholar
 

Bergman, M. et al. Guidelines for inclusive and equitable energy and transport modeling. iScience 28, 113218 (2025).

Article 

Google Scholar
 

Trotter, P. A. Rural electrification, electrification inequality and democratic institutions in sub-Saharan Africa. Energy Sustain. Dev. 34, 111–129 (2016).

Article 

Google Scholar
 

Mengisteab, K. Traditional institutions of governance in Africa. Oxford Research Encyclopedia of Politics https://doi.org/10.1093/acrefore/9780190228637.013.1347 (2019).

Dioha, M. O. & Mutiso, R. Generating meaningful energy systems models for Africa. Issues Sci. Technol. 39, 54–57 (2023).

Article 

Google Scholar
 

Blimpo, M. P., Dato, P., Mukhaya, B. & Odarno, L. Climate change and economic development in Africa: a systematic review of energy transition modeling research. Energy Policy 187, 114044 (2024).

Article 

Google Scholar
 

Lonergan, K. E. et al. Improving the representation of cost of capital in energy system models. Joule 7, 469–483 (2023).

Article 

Google Scholar
 

Stapczynski, S. & Mangi, F. How energy traders left a country in the cold. Bloomberg (14 Deember 2023).

Mercure, J.-F. et al. Macroeconomic impact of stranded fossil fuel assets. Nat. Clim. Change 8, 588–593 (2018).

Article 

Google Scholar
 

Hanna, R. & Gross, R. How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners. Energy Policy 149, 111984 (2021).

Article 

Google Scholar
 

Johansson, D. The energy crisis in Zambia is undermining the Lobito Corridor’s potential — and DFC’s investments. Energy for Growth Hub https://energyforgrowth.org/article/the-energy-crisis-in-zambia-is-undermining-the-lobito-corridors-potential-and-dfcs-investments/ (2025).

Yalew, S. G. et al. Impacts of climate change on energy systems in global and regional scenarios. Nat. Energy 5, 794–802 (2020).

Article 

Google Scholar
 

Fuso Nerini, F., Adshead, D., Thacker, S., Pant, R. & Hall, J. W. Breaking the cycle of underinvestment in climate-resilient energy infrastructure. Nat. Energy https://doi.org/10.1038/s41560-025-01868-9 (2025).

Article 

Google Scholar
 

Do, T. N. et al. Vietnam’s solar and wind power success: policy implications for the other ASEAN countries. Energy Sustain. Dev. 65, 1–11 (2021).

Article 

Google Scholar
 

Jones, D. The first evidence of a take-off in solar in Africa. Ember https://ember-energy.org/app/uploads/2025/08/Report-Ember-The-first-evidence-of-a-take-off-in-solar-in-Africa.pdf (2025).

Mutiso, R. African energy transitions should be driven from the ground up. Science 382, eadl3462 (2023).

Article 

Google Scholar
 

Trotter, P. A., Cooper, N. J. & Wilson, P. R. A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification—the case of Uganda. Appl. Energy 243, 288–312 (2019).

Article 

Google Scholar
 

Pasqualino, R. et al. Modelling induced innovation for the low-carbon energy transition: a menu of options. Environ. Res. Lett. 19, 073004 (2024).

Article 

Google Scholar
 

Egli, F. et al. Mapping the cost competitiveness of African green hydrogen imports to Europe. Nat. Energy 10, 750–761 (2025).

Article 

Google Scholar
 

Onsongo, E., Eludoyin, E. O., Tesfamichael, M. & Tomei, J. The political economy of least cost power planning in Kenya. Energy Policy 207, 114819 (2025).

Article 

Google Scholar
 

Hirmer, S. et al. Inconsistent measurement calls into question progress on electrification in sub-Saharan Africa. Nat. Energy 9, 1046–1050 (2024).


Google Scholar
 

Debnath, K. B. & Mourshed, M. Challenges and gaps for energy planning models in the developing-world context. Nat. Energy 3, 172–184 (2018).

Article 

Google Scholar
 

Dramani, J. B. et al. Estimating and forecasting suppressed electricity demand in Ghana under climate change, the informal economy and sector inefficiencies. Heliyon 10, e36001 (2024).

Article 

Google Scholar
 

Khavari, B., Ramirez, C., Jeuland, M. & Fuso Nerini, F. A geospatial approach to understanding clean cooking challenges in sub-Saharan Africa. Nat. Sustain. 6, 447–457 (2023).

Article 

Google Scholar
 

Edomah, N., Bazilian, M. & Sovacool, B. K. Sociotechnical typologies for national energy transitions. Environ. Res. Lett. 15, 111001 (2020).

Article 

Google Scholar
 

Dioha, M., Edomah, N. & Caldeira, K. Fixing the disconnect around energy access. Issues Sci. Technol. 38, 51–56 (2022).


Google Scholar
 

Maboshe, M., Leonard, A., Bickersteth, S., McCulloch, N. & Hirmer, S. A. The status of power sector decentralisation in Zambia. Climate Compatible Growth Programme https://ora.ox.ac.uk/objects/uuid:4e414635-3a56-409d-87ba-64a43e442248 (2023).

Smit, S., Musango, J. K. & Brent, A. C. Understanding electricity legitimacy dynamics in an urban informal settlement in South Africa: a Community Based System Dynamics approach. Energy Sustain. Dev. 49, 39–52 (2019).

Article 

Google Scholar
 

Mirindi, D., Sušnik, J., Masia, S. & Jewitt, G. A system dynamics modelling assessment of water-energy-food resource demand futures at the city scale: Goma, Democratic Republic of Congo. World Dev. Sustain. 5, 100159 (2024).

Article 

Google Scholar
 

Agutu, C., Egli, F., Williams, N. J., Schmidt, T. S. & Steffen, B. Accounting for finance in electrification models for sub-Saharan Africa. Nat. Energy 7, 631–641 (2022).

Article 

Google Scholar
 

Dagnachew, A. G., Choi, S.-M. & Falchetta, G. Energy planning in sub-Saharan African countries needs to explicitly consider productive uses of electricity. Sci. Rep. 13, 13007 (2023).

Article 

Google Scholar
 

Trotter, P. A., Maconachie, R. & McManus, M. C. Solar energy’s potential to mitigate political risks: the case of an optimised Africa-wide network. Energy Policy 117, 108–126 (2018).

Article 

Google Scholar
 

Africa’s electricity access planners turn to geospatial mapping. International Energy Agency https://www.iea.org/commentaries/africa-s-electricity-access-planners-turn-to-geospatial-mapping (2024).

González-Garcia, A. et al. A rising role for decentralized solar minigrids in integrated rural electrification planning? Large-scale, least-cost, and customer-wise design of grid and off-grid supply systems in Uganda. Energies 15, 4517 (2022).

Article 

Google Scholar
 

Dato, P. et al. Computation of weighted average cost of capital (WACC) in the power sector for African countries and the implications for country-specific electricity technology cost. Appl. Energy 397, 126333 (2025).

Article 

Google Scholar
 

Kalra, N. et al. The benefits and costs of reaching net zero emissions in Latin America and the Caribbean. Inter-American Development Bank https://publications.iadb.org/en/benefits-and-costs-reaching-net-zero-emissions-latin-america-and-caribbean (2023).

Gyanwali, K. et al. Integrating glacio-hydrological and power grid models to assess the climate-resiliency of high mountain hydropower in Nepal. Renew. Sustain. Energy Rev. 183, 113433 (2023).

Article 

Google Scholar
 

Ramos, E. P. et al. The climate, land, energy and water systems (CLEWs) framework: a retrospective of activities and advances to 2019. Environ. Res. Lett. 16, 033003 (2021).


Google Scholar
 

Sridharan, V. et al. Resilience of the Eastern African electricity sector to climate driven changes in hydropower generation. Nat. Commun. 10, 302 (2019).

Article 

Google Scholar
 

Manley, D., Furnaro, A. & Heller, P. Riskier bets, smaller pockets: how national oil companies are spending public money amid the energy transition. Natural Resource Governance Institute https://resourcegovernance.org/sites/default/files/2023-11/Riskier-Bets-Smaller-Pockets-How-National-Oil-Companies-Are-Spending-Public-Money-Amid-the-Energy-Transition.pdf (2023).

Damodaran, A. Country risk: determinants, measures and implications—the 2024 edition. New York University https://doi.org/10.2139/ssrn.4896539 (2024).

ESMAP. Tracking SDG7: The Energy Progress Report (ESMAP, 2025).

GDP per capita, PPP. World Bank https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD (accessed 17 December 2025).