Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501–502 (1928).

Article 
ADS 

Google Scholar
 

Movasaghi, Z., Rehman, S. & Rehman, I. U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42, 493–541 (2007).

Article 
ADS 

Google Scholar
 

Rygula, A. et al. Raman spectroscopy of proteins: a review. J. Raman Spectrosc. 44, 1061–1076 (2013).

Article 
ADS 

Google Scholar
 

Czamara, K. et al. Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015).

Article 
ADS 

Google Scholar
 

Lima, C., Muhamadali, H. & Goodacre, R. The role of Raman spectroscopy within quantitative metabolomics. Annu. Rev. Anal. Chem. 14, 323–345 (2021).

Article 

Google Scholar
 

Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, eaaa8870 (2015).

Article 

Google Scholar
 

Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

Article 

Google Scholar
 

Cheng, J.-X., Jia, Y. K., Zheng, G. & Xie, X. S. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophys. J. 83, 502–509 (2002).

Article 
ADS 

Google Scholar
 

Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

Article 
ADS 

Google Scholar
 

Min, W., Freudiger, C. W., Lu, S. & Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011).

Article 
ADS 

Google Scholar
 

Evans, C. L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807–16812 (2005).

Article 
ADS 

Google Scholar
 

Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

Article 
ADS 

Google Scholar
 

Dodo, K., Fujita, K. & Sodeoka, M. Raman spectroscopy for chemical biology research. J. Am. Chem. Soc. 144, 19651–19667 (2022).

Article 
ADS 

Google Scholar
 

Gao, X., Li, X. & Min, W. Absolute stimulated Raman cross sections of molecules. J. Phys. Chem. Lett. 14, 5701–5708 (2023).

Article 

Google Scholar
 

De Silvestri, S. et al. Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in α-perylene crystal from 20 to 300 K. Chem. Phys. Lett. 116, 146–152 (1985).

Article 
ADS 

Google Scholar
 

Selm, R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system. Opt. Lett. 35, 3282–3284 (2010).

Article 
ADS 

Google Scholar
 

Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

Article 
ADS 

Google Scholar
 

Camp, C. H. Jr et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photon. 8, 627–634 (2014).

Article 
ADS 

Google Scholar
 

Yu, Q. et al. Transient stimulated Raman excited fluorescence spectroscopy. J. Am. Chem. Soc. 145, 7758–7762 (2023).

Article 
ADS 

Google Scholar
 

Yu, Q. et al. Transient stimulated Raman scattering spectroscopy and imaging. Light Sci. Appl. 13, 70 (2024).

Article 
ADS 

Google Scholar
 

Kop, R. H., De Vries, P., Sprik, R. & Lagendijk, A. Kramers-Kronig relations for an interferometer. Opt. Commun. 138, 118–126 (1997).

Article 
ADS 

Google Scholar
 

Lenz, G., Eggleton, B., Giles, C., Madsen, C. & Slusher, R. Dispersive properties of optical filters for WDM systems. IEEE J. Quantum Electron. 34, 1390–1402 (1998).

Article 
ADS 

Google Scholar
 

Chia, S.-H. et al. Two-octave-spanning dispersion-controlled precision optics for sub-optical-cycle waveform synthesizers. Optica 1, 315–322 (2014).

Article 
ADS 

Google Scholar
 

Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2016).

Article 

Google Scholar
 

Stolen, R. & Lin, C. Self-phase-modulation in silica optical fibers. Phys. Rev. A 17, 1448 (1978).

Article 
ADS 

Google Scholar
 

Tomlinson, W., Stolen, R. & Shank, C. Compression of optical pulses chirped by self-phase modulation in fibers. JOSA B 1, 139–149 (1984).

Article 
ADS 

Google Scholar
 

Nakamura, T., Ramaiah Badarla, V., Hashimoto, K., Schunemann, P. G. & Ideguchi, T. Simple approach to broadband mid-infrared pulse generation with a mode-locked Yb-doped fiber laser. Opt. Lett. 47, 1790–1793 (2022).

Article 
ADS 

Google Scholar
 

Selm, R., Krauss, G., Leitenstorfer, A. & Zumbusch, A. Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses. Appl. Phys. Lett. 99, 181124 (2011).

Article 
ADS 

Google Scholar
 

Xiong, H. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photon. 13, 412–417 (2019).

Article 
ADS 

Google Scholar
 

Palonpon, A. F. et al. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8, 677–692 (2013).

Article 

Google Scholar
 

Yamakoshi, H. et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 133, 6102–6105 (2011).

Article 
ADS 

Google Scholar
 

Kuramochi, H., Takeuchi, S. & Tahara, T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev. Sci. Instrum. 87, 043107 (2016).

Article 
ADS 

Google Scholar
 

Paxinos, G. & Franklin, K. B. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates (Academic Press, 2019).

Rohleder, D., Kiefer, W. & Petrich, W. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy. Analyst 129, 906–911 (2004).

Article 
ADS 

Google Scholar
 

Saade, J. et al. Glicemical analysis of human blood serum using FT-Raman: a new approach. Photomed. Laser Surg. 30, 388–392 (2012).

Article 

Google Scholar
 

Giansante, S., Giana, H. E., Fernandes, A. B. & Silveira, L. Jr Analytical performance of Raman spectroscopy in assaying biochemical components in human serum. Lasers Med. Sci. 37, 287–298 (2022).

Article 

Google Scholar
 

Medipally, D. K. et al. Development of a high throughput (HT) Raman spectroscopy method for rapid screening of liquid blood plasma from prostate cancer patients. Analyst 142, 1216–1226 (2017).

Article 
ADS 

Google Scholar
 

Friedman, A. N. & Fadem, S. Z. Reassessment of albumin as a nutritional marker in kidney disease. J. Am. Soc. Nephrol. 21, 223–230 (2010).

Article 

Google Scholar
 

Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8, 1–22 (2018).

Article 

Google Scholar
 

Kannel, W. B., Castelli, W. P. & Gordon, T. Cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham study. Ann. Intern. Med. 90, 85–91 (1979).

Article 

Google Scholar
 

Don, B. R. & Kaysen, G. Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition. Semin. Dial. 17, 432–437 (2004).

Article 

Google Scholar
 

Busher, J. T. in Clinical Methods: The History, Physical, and Laboratory Examinations (eds Walker, H. K. et al.) Ch. 101 (Butterworths, 1990).

Cheng, J.-X. & Xie, X. S. Coherent Raman Scattering Microscopy (CRC Press, 2012).

Camp, C. H. Jr, Lee, Y. J. & Cicerone, M. T. Quantitative, comparable coherent anti-Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval. J. Raman Spectrosc. 47, 408–415 (2016).

Article 
ADS 

Google Scholar
 

Pollard, W. T. & Mathies, R. A. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43, 497–523 (1992).

Article 
ADS 

Google Scholar
 

Kuramochi, H. & Tahara, T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy. J. Am. Chem. Soc. 143, 9699–9717 (2021).

Article 
ADS 

Google Scholar
 

Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

Article 

Google Scholar
 

Liu, X., Shi, L., Zhao, Z., Shu, J. & Min, W. VIBRANT: spectral profiling for single-cell drug responses. Nat. Methods 21, 501–511 (2024).

Article 

Google Scholar
 

Liu, Y., Lee, Y. J. & Cicerone, M. T. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt. Lett. 34, 1363–1365 (2009).

Article 
ADS 

Google Scholar
 

Vartiainen, E. M., Rinia, H. A., Müller, M. & Bonn, M. Direct extraction of Raman line-shapes from congested CARS spectra. Opt. Express 14, 3622–3630 (2006).

Article 
ADS 

Google Scholar
 

Xiong, H. et al. Super-broadband stimulated Raman scattering spectroscopy and imaging. figshare https://doi.org/10.6084/m9.figshare.30379255 (2025).