Moitra, P. et al. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv. Mater. 35, 2205367 (2023).

CAS 

Google Scholar
 

Karvounis, A., Gholipour, B., MacDonald, K. F. & Zheludev, N. I. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett. 109, 051103 (2016).

Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, W., Wu, X., Li, L., Zou, C. & Chen, Y. Fabrication of a VO2-based tunable metasurface by electric-field scanning probe lithography with precise depth control. ACS Appl. Mater. Interfaces 15, 13517–13525 (2023).

CAS 
PubMed 

Google Scholar
 

Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Koenderink, A. F. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 6234 (2015).

Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).

ADS 
CAS 

Google Scholar
 

Jung, C., Lee, E. & Rho, J. The rise of electrically tunable metasurfaces. Sci. Adv. 10, eado8964 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Siegel, J. et al. Electrostatic steering of thermal emission with active metasurface control of delocalized modes. Nat. Commun. 15, 3376 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sokhoyan, R., Hail, C. U., Foley, M., Grajower, M. Y. & Atwater, H. A. All-dielectric high-Q dynamically tunable transmissive metasurfaces. Laser Photonics Rev. 18, 2300980 (2024).

ADS 

Google Scholar
 

King, J. et al. Electrically tunable VO2–metal metasurface for mid-infrared switching, limiting and nonlinear isolation. Nat. Photon. 18, 74–80 (2024).

ADS 
CAS 

Google Scholar
 

Abdollahramezani, S. et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency. Nat. Commun. 13, 1696 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, J. et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics 4, 02400116 (2022).

ADS 
CAS 

Google Scholar
 

Park, S. et al. Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light: Sci. Appl. 9, 98 (2020).

Hu, H. et al. Environmental permittivity-asymmetric BIC metasurfaces with electrical reconfigurability. Nat. Commun. 15, 7050 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Baranzadeh, F. & Nozhat, N. Tunable metasurface refractive index plasmonic nano-sensor utilizing an ITO thin layer in the near-infrared region. Appl. Opt. 58, 2616 (2019).

ADS 
CAS 
PubMed 

Google Scholar
 

Heßler, A. et al. In3SbTe2 as a programmable nanophotonics material platform for the infrared. Nat. Commun. 12, 924 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Leitis, A. et al. All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater. 30, 1910259 (2020).

Sha, X. et al. Chirality tuning and reversing with resonant phase-change metasurfaces. Sci. Adv. 10, eadn9017 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, H. et al. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci. Adv. 10, eadk3882 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Malek, S. C., Overvig, A. C., Shrestha, S. & Yu, N. Active nonlocal metasurfaces. Nanophotonics 10, 655–665 (2021).


Google Scholar
 

Crotti, G. et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light: Sci. Appl. 13, 204 (2024).

Weigand, H. C. et al. Nanoimprinting solution-derived barium titanate for electro-optic metasurfaces. Nano Lett. 24, 5536–5542 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Howes, A., Wang, W., Kravchenko, I. & Valentine, J. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787–792 (2018).

ADS 
CAS 

Google Scholar
 

Aigner, A. et al. Engineering of active and passive loss in high-quality-factor vanadium dioxide-based BIC metasurfaces. Nano Lett. 24, 10742–10749 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lucarini, V., Peiponen, K.-E., Saarinen, J. J. & Vartiainen, E. M. in Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003).

ADS 

Google Scholar
 

Joseph, S., Pandey, S., Sarkar, S. & Joseph, J. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications. Nanophotonics 10, 4175–4207 (2021).

CAS 

Google Scholar
 

Overvig, A. C., Malek, S. C., Carter, M. J., Shrestha, S. & Yu, N. Selection rules for quasibound states in the continuum. Phys. Rev. B 102, 035434 (2020).

ADS 
CAS 

Google Scholar
 

Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

ADS 
PubMed 

Google Scholar
 

Ma, W. et al. Active quasi-BIC metasurfaces assisted by epsilon-near-zero materials. Opt. Express 31, 13125 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Tian, F., Zhou, J., Abraham, E. & Liu, Z. Tunable dielectric BIC metasurface for high resolution optical filters. J. Phys. D 56, 134002 (2023).

ADS 
CAS 

Google Scholar
 

Sinev, I. S. et al. Observation of ultrafast self-action effects in quasi-BIC resonant metasurfaces. Nano Lett. 21, 8848–8855 (2021).

ADS 
CAS 
PubMed 

Google Scholar
 

Kwon, H., Zheng, T. & Faraon, A. Nano-electromechanical tuning of dual-mode resonant dielectric metasurfaces for dynamic amplitude and phase modulation. Nano Lett. 21, 2817–2823 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karl, N. et al. All-optical tuning of symmetry protected quasi bound states in the continuum. Appl. Phys. Lett. 115, 141103 (2019).

Han, S. et al. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater. 31, 1901921 (2019).

ADS 

Google Scholar
 

Stillinger, F. H. & Herrick, D. R. Bound states in the continuum. Phys. Rev. A 11, 446–454 (1975).

ADS 
CAS 

Google Scholar
 

Berté, R. et al. All-optical permittivity-asymmetric quasi-bound states in the continuum. Light: Sci. Appl. 14, 185 (2025).

PubMed 

Google Scholar
 

Yang, Z. et al. Ultrafast Q-boosting in semiconductor metasurfaces. Nanophotonics 13, 2173–2182 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berté, R. et al. Permittivity-asymmetric quasi-bound states in the continuum. Nano Lett. 23, 2651–2658 (2023).

ADS 
PubMed 

Google Scholar
 

Ndi, F. C., Toulouse, J., Hodson, T. & Prather, D. W. All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect. Opt. Lett. 30, 2254 (2005).

ADS 
PubMed 

Google Scholar
 

Lui, K. P. H. & Hegmann, F. A. Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments. Appl. Phys. Lett. 78, 3478–3480 (2001).

ADS 
CAS 

Google Scholar
 

Aigner, A., Weber, T., Wester, A., Maier, S. A. & Tittl, A. Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces. Nat. Nanotechnol. 19, 1804–1812 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soref, R. & Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

ADS 

Google Scholar
 

Gorkunov, M. V., Antonov, A. A., Mamonova, A. V., Muljarov, E. A. & Kivshar, Y. Substrate‐induced maximum optical chirality of planar dielectric structures. Adv. Opt. Mater. 13, 2402133 (2025).

CAS 

Google Scholar
 

Barati Sedeh, H., Salary, M. M. & Mosallaei, H. Optical pulse compression assisted by high‐Q time‐modulated transmissive metasurfaces. Laser Photonics Rev. 16, 2100449 (2022).

Asgari, M. M et al. Theory and applications of photonic time crystals: a tutorial. Adv. Opt. Photon. 16, 958–1063 (2024).

Hang, X. I. Z. et al. Giant magneto-optical Kerr effects governed by the quasi-bound states in the continuum. Opt. Express 32, 38720–38729 (2024).

Schinke, C. et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv. 5, 067168 (2015).

Aigner, A. et al. Data supporting publication: Optical control of resonances in temporally symmetry-broken metasurfaces. Zenodo https://doi.org/10.5281/zenodo.15662526 (2025).