Mattiazzi Usaj, M. et al. High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598–611 (2016).

CAS 
PubMed 

Google Scholar
 

Bougen-Zhukov, N., Loh, S. Y., Lee, H. K. & Loo, L.-H. Large-scale image-based screening and profiling of cellular phenotypes. Cytom. A 91, 115–125 (2017).


Google Scholar
 

Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).

CAS 
PubMed 

Google Scholar
 

Cheng, J. et al. Massively parallel CRISPR-based genetic perturbation screening at single-cell resolution. Adv. Sci. 10, e2204484 (2023).


Google Scholar
 

Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

CAS 
PubMed 

Google Scholar
 

Dagher, M. et al. nELISA: a high-throughput, high-plex platform enables quantitative profiling of the secretome. Preprint at bioRxiv https://doi.org/10.1101/2023.04.17.535914 (2023).

Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moshkov, N. et al. Predicting compound activity from phenotypic profiles and chemical structures. Nat. Commun. 14, 1967 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Way, G. P. et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 13, 911–923 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods 19, 1550–1557 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 20, 145–159 (2021).

CAS 
PubMed 

Google Scholar
 

Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ohya, Y. et al. High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl Acad. Sci. USA 102, 19015–19020 (2005).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mattiazzi Usaj, M. et al. Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol. Syst. Biol. 16, e9243 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Heigwer, F. et al. A global genetic interaction network by single-cell imaging and machine learning. Cell Syst. https://doi.org/10.1016/j.cels.2023.03.003 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Fay, M. M. et al. RxRx3: phenomics map of biology. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527350 (2023).

Ramezani, M. et al. A genome-wide atlas of human cell morphology. Nat. Methods 22, 621–633 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lazar, N. H. et al. High-resolution genome-wide mapping of chromosome-arm-scale truncations induced by CRISPR–Cas9 editing. Nat. Genet. 56, 1482–1493 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrasekaran, S. N. et al. Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations. Nat. Methods 21, 1114–1121 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534023 (2023).

Cimini, B. A. et al. Optimizing the Cell Painting assay for image-based profiling. Nat. Protoc. 18, 1981–2013 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kalinin, A. A. et al. A versatile information retrieval framework for evaluating profile strength and similarity. Nat. Commun. 16, 5181 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

PubMed 

Google Scholar
 

Ioannidis, V. N. et. al. Drkg – drug repurposing knowledge graph for covid-19. GitHub https://github.com/gnn4dr/DRKG/ (2020).

Kuo, S.-J. et al. TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging 11, 4075–4089 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vivar, R. et al. Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. Biochim. Biophys. Acta, Mol. Cell. Res. 1867, 118695 (2020).

CAS 
PubMed 

Google Scholar
 

Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19, 382–398 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a ‘clutch’ between the ATPase and microtubule-binding domains of the dynein motor. Cell 150, 975–986 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumari, A. et al. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J. Cell Biol. 220, e202005184 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dwivedi, D., Kumari, A., Rathi, S., Mylavarapu, S. V. S. & Sharma, M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J. Cell Biol. 218, 871–894 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rohban, M. H. et al. Systematic morphological profiling of human gene and allele function via Cell Painting. eLife 6, e24060 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Lee, J. et al. A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. eLife 8, e46703 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Fu, M. et al. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Target. Ther. 7, 376 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Gong, R. et al. Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell Res. 25, 985–988 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Selinger, D. W. et al. A framework for autonomous AI-driven drug discovery. Preprint at bioRxiv https://doi.org/10.1101/2024.12.17.629024 (2024).

Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McClintick, J. N. et al. Stress-response pathways are altered in the hippocampus of chronic alcoholics. Alcohol 47, 505–515 (2013).

CAS 
PubMed 

Google Scholar
 

Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

CAS 
PubMed 

Google Scholar
 

Kapeli, K. et al. Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vrenken, K. S. et al. The transcriptional repressor SNAI2 impairs neuroblastoma differentiation and inhibits response to retinoic acid therapy. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165644 (2020).

CAS 
PubMed 

Google Scholar
 

Rivera-Reyes, A. et al. YAP1 enhances NF-κB-dependent and independent effects on clock-mediated unfolded protein responses and autophagy in sarcoma. Cell Death Dis. 9, 1108 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Delgado, A. P., Brandao, P., Chapado, M. J., Hamid, S. & Narayanan, R. Open reading frames associated with cancer in the dark matter of the human genome. Cancer Genomics Proteom. 11, 201–213 (2014).


Google Scholar
 

Lu, Z. & Feng, Y. Foreboding lncRNA markers of low-grade gliomas dependent on metabolism. Medicine 101, e31302 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Usman, S. et al. Transcriptome analysis reveals vimentin-induced disruption of cell-cell associations augments breast cancer cell migration. Cells 11, 4035 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

PubMed 

Google Scholar
 

Tran, K.-V. et al. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat. Metab. 2, 397–412 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, X. et al. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat. Cell Biol. 19, 626–638 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mitchell, D. C. et al. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 41, 845–857 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morita, M. et al. MTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922–935 (2017).

CAS 
PubMed 

Google Scholar
 

Sun, Q. et al. UQCRFS1 serves as a prognostic biomarker and promotes the progression of ovarian cancer. Sci. Rep. 13, 8335 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doi, M. et al. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat. Commun. 7, 10583 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, W.-Y. et al. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun. Biol. 4, 22 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Iida, M., Anna, C. H., Gaskin, N. D., Walker, N. J. & Devereux, T. R. The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b. Toxicol. Sci. 99, 43–50 (2007).

CAS 
PubMed 

Google Scholar
 

Liu, R., Zhou, D., Yu, B. & Zhou, Z. Phosphorylation of LZTS2 by PLK1 activates the Wnt pathway. Cell. Signal. 120, 111226 (2024).

CAS 
PubMed 

Google Scholar
 

Tang, S.-J. Synaptic activity-regulated Wnt signaling in synaptic plasticity, glial function and chronic pain. CNS Neurol. Disord. Drug Targets 13, 737–744 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kameda-Smith, M. M. et al. Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma. Nat. Commun. 13, 7506 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, T. et al. Multi-omic comparison of Alzheimer’s variants in human ESC-derived microglia reveals convergence at APOE. J. Exp. Med. 217, e20200474 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandrasekaran, S. N. Phenotypically active ORF and CRISPR consensus profiles. Zenodo https://doi.org/10.5281/zenodo.14025601 (2024).

Munoz, A. Phenotypically active ORF and CRISPR consensus profiles. Zenodo https://doi.org/10.5281/zenodo.14164990 (2024).

Arevalo, J. et al. Evaluating batch correction methods for image-based cell profiling. Nat. Commun. 15, 6516 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Berger, A. H. et al. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell 30, 214–228 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Singh, S., Bray, M.-A., Jones, T. R. & Carpenter, A. E. Pipeline for illumination correction of images for high-throughput microscopy. J. Microsc. 256, 231–236 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Serrano, E. et al. Reproducible image-based profiling with Pycytominer. Nat. Methods 22, 677–680 (2025).

CAS 
PubMed 

Google Scholar
 

Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tsuchida, C. A. et al. Mitigation of chromosome loss in clinical CRISPR–Cas9-engineered T cells. Cell 186, 4567–4582 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Przewrocka, J., Rowan, A., Rosenthal, R., Kanu, N. & Swanton, C. Unintended on-target chromosomal instability following CRISPR/Cas9 single gene targeting. Ann. Oncol. 31, 1270–1273 (2020).

CAS 
PubMed 

Google Scholar
 

Chen, Z. & Chandrasekaran, S. N. Similarity of CRISPR genes grouped by chromosome location without chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754407 (2024).

Chen, Z. & Chandrasekaran, S. N. Similarity of ORF genes grouped by chromosome without chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754178 (2024).

Chen, Z. & Chandrasekaran, S. N. Similarity of CRISPR genes grouped by chromosome location with chromosome arm correction. Zenodo https://doi.org/10.5281/zenodo.13754508 (2024).

Ding, X. et al. Scaling up your kernels to 31 × 31: revisiting large kernel design in CNNs. Preprint at https://arxiv.org/abs/2203.06717 (2022).

Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clough, E. et al. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 52, D138–D144 (2024).

CAS 
PubMed 

Google Scholar
 

Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6, 1353–1369 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Kipf, T. N. & Welling, M. Variational graph auto-encoders. Preprint at https://arxiv.org/abs/1611.07308 (2016).

Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

Bonner, S. et al. Understanding the performance of knowledge graph embeddings in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022).


Google Scholar
 

Ali, M. et al. Bringing light into the dark: a large-scale evaluation of knowledge graph embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8825–8845 (2022).

PubMed 

Google Scholar
 

Ren, F. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat. Biotechnol. 43, 63–75 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gene Ontology Consortium, et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).