Noordwijk, A. J. & van de Jong, G. Acquisition and allocation of resources : their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).
Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).
Roff, D. A. Life History Evolution. (2002).
J Emlen, D. Environmental control of Horn length dimorphism in the beetle onthophagus acuminatus (Coleoptera: Scarabaeida). Proc. R Soc. Lond. B Biol. Sci. 256, 131–136 (1994).
Moczek, A. P. & Emlen, D. J. Male Horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim. Behav. 59, 459–466 (2000).
Braendle, C., Friebe, I., Caillaud, M. C. & Stern, D. L. Genetic variation for an aphid wing polyphenism is genetically linked to a naturally occurring wing polymorphism. Proc. R Soc. B Biol. Sci. 272, 657–664 (2005).
Yamane, T., Okada, K., Nakayama, S. & Miyatake, T. Dispersal and ejaculatory strategies associated with exaggeration of weapon in an armed beetle. Proc. R Soc. B Biol. Sci. 277, 1705–1710 (2010).
Smallegange, I. M., Deere, J. A. & Coulson, T. Correlative changes in life-history variables in response to environmental change in a model organism. Am. Nat. 183, 784–797 (2014).
Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69, 1597–1602 (2015).
Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. Anticipatory flexibility: larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B Biol. Sci. 284, (2017).
Peterson, M. L., Doak, D. F. & Morris, W. F. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Glob Change Biol. 24, 1614–1625 (2018).
Snell-Rood, E. C. & Moczek, A. P. Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 7.4, e34857 (2012).
Brommer, J. E. The evolution of fitness in life-history theory. Biol. Rev. 75, 377–404 (2000).
Freitak, D., Wheat, C. W., Heckel, D. G. & Vogel, H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of trichoplusia Ni. BMC Biol. 5, 56 (2007).
Hanson, M. A., Lemaitre, B. & Unckless, R. L. Dynamic evolution of antimicrobial peptides underscores Trade-Offs between immunity and ecological fitness. Front Immunol 10, 2620 (2019).
Hosken, D. J. Sex and death: microevolutionary trade-offs between reproductive and immune investment in Dung flies. Curr. Biol. 11, 379–380 (2001).
Iglesias-Carrasco, M., Head, M. L., Jennions, M. D. & Cabido, C. Condition-dependent trade-offs between sexual traits, body condition and immunity: the effect of novel habitats. BMC Evol. Biol. 16, 1–10 (2016).
Leman, J. C. et al. Lovesick: immunological costs of mating to male sagebrush crickets. J. Evol. Biol. 22, 163–171 (2009).
Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1991).
Wilson, K. & Cotter, S. Density-Dependent Prophylaxis in Insects. in Phenotypic Plasticity of Insects (eds. Whitman, D. & Ananthakrishnan, T.)Science Publishers, (2009). https://doi.org/10.1201/b10201-7
Møller, A. P. Parasites and sexual selection: current status of the Hamilton and Zuk hypothesis. J. Evol. Biol. 3, 319–328 (1990).
Dewsbury, D. A. The Darwin-Bateman paradigm in historical Context1. Integr. Comp. Biol. 45, 831–837 (2005).
Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal Kingdom. Sci. Adv. 2, e1500983 (2016).
Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11, 317–321 (1996).
Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1024 (1996).
Rolff, J. Bateman’s principle and immunity. Proc. R Soc. B Biol. Sci. 269, 867–872 (2002).
Marmaras, V. J., Charalambidis, N. D. & Zervas, C. G. Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch. Insect Biochem. Physiol. 31, 119–133 (1996).
Gillespie, J. P., Kanost, M. R. & Trenczek, T. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611–643 (1997).
Kanost, M. R. & Gorman, M. J. Phenoloxidases in insect immunity. Insect Immunol. 1, 69–96 (2008).
Schmid-Hempel, P. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551 (2005).
Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).
Kelly, C. D., Stoehr, A. M., Nunn, C., Smyth, K. N. & Prokop, Z. M. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894 (2018).
McAfee, A., Chapman, A., Pettis, J. S., Foster, L. J. & Tarpy, D. R. Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun. Biol. 4, 1–11 (2021).
Gascoigne, S. J. L., Nalukwago, U., Barbosa, F. & D. I. & Larval density, sex, and allocation hierarchy affect life history trait covariances in a bean beetle. Am. Nat. 199, 291–301 (2022).
Nokelainen, O., Lindstedt, C. & Mappes, J. Environment-mediated morph‐linked immune and life‐history responses in the aposematic wood tiger moth. J. Anim. Ecol. 82, 653–662 (2013).
Silva, F. W. et al. Two’s a crowd: phenotypic adjustments and prophylaxis in Anticarsia gemmatalis larvae are triggered by the presence of conspecifics. PloS One. 8, e61582 (2013).
Bailey, N. W., Gray, B. & Zuk, M. Does immunity vary with population density in wild populations of Mormon crickets? Evol. Ecol. Res. 10, 599–610 (2008).
Wilson, K. et al. Coping with crowds: density-dependent disease resistance in desert locusts. Proc. Natl. Acad. Sci. 99, 5471–5475 (2002).
Kelly, C. D. & L’Heureux, V. Effect of rearing density on female investment in reproduction and melanotic encapsulation response in the sand cricket (Gryllus firmus) (Orthoptera: Gryllidae). Biol. J. Linn. Soc. 144, blae023 (2024).
Kelly, C. D., L’Heureux, V., Wey, T. W. & Réale, D. Effect of rearing density on the expression of fitness-related traits in male sand field crickets (Gryllus firmus). Evol. Ecol. 37, 835–846 (2023).
Rolff, J. & Siva-Jothy, M. T. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. 99, 9916–9918 (2002).
Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40 (2011).
Immonen, E., Sayadi, A., Bayram, H. & Arnqvist, G. Mating changes sexually dimorphic gene expression in the seed beetle Callosobruchus maculatus. Genome Biol. Evol. 9, 677–699 (2017).
Zera, A. J. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions1. Integr. Comp. Biol. 43, 607–616 (2003).
Wilson, K. Evolution of clutch size in insects. II. A test of static optimality models using the beetle Callosobruchus maculatus (Coleoptera: Bruchidae). J. Evol. Biol. 7, 365–386 (1994).
Vamosi, S. M. Interactive effects of larval host and competition on adult fitness: an experimental test with seed beetles (Coleoptera: Bruchidae). Funct. Ecol. 19, 859–864 (2005).
Beck, C. W. & Blumer, L. S. A handbook on bean beetles, Callosobruchus maculatus. Caryologia 24, 157–166 (2011).
Utida, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). J. Stored Prod. Res. 8, 111–125 (1972).
Dougherty, L. R. et al. Sexual conflict and correlated evolution between male persistence and female resistance traits in the seed beetle Callosobruchus maculatus. Proc. R. Soc. B Biol. Sci. 284, (2017).
Rasband, W. S. ImageJ. (1997).
Microsystems, L. Leica application Suite version 2.0. (2010).
Peterson, R. A. Finding optimal normalizing transformations via bestNormalize. (2021).
SAS Institute Inc. JMP®. (1989).