Schubert, M. et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

Article 
ADS 

Google Scholar
 

Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bubnova, R., Volkov, S., Albert, B. & Filatov, S. Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals 7, 93 (2017).

Article 

Google Scholar
 

Lin, I. C. et al. Extraction of anisotropic thermal vibration factors for oxygen from the Ti L2,3-edge in SrTiO3. J. Phys. Chem. C 127, 17802–17808 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Abramov, Y. A., Tsirelson, V. G., Zavodnik, V. E., Ivanov, S. A. & Brown, I. D. The chemical bond and atomic displacements in SrTiO3 from X-ray diffraction analysis. Acta Crystallogr. B 51, 942–951 (1995).

Article 
ADS 

Google Scholar
 

Gong, Y. et al. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 10, 2200038 (2022).

Article 
CAS 

Google Scholar
 

Jauch, W. & Reehuis, M. Electron-density distribution in cubic SrTiO3: a comparative gamma-ray diffraction study. Acta Crystallogr. A 61, 411–417 (2005).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).

Article 
CAS 

Google Scholar
 

Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xu, M. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zeiger, P. M. & Rusz, J. Simulations of spatially and angle-resolved vibrational electron energy loss spectroscopy for a system with a planar defect. Phys. Rev. B 104, 094103 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Hoglund, E. R. et al. Direct visualization of localized vibrations at complex grain boundaries. Adv. Mater. 35, e2208920 (2023).

Article 
PubMed 

Google Scholar
 

Haas, B. et al. Atomic-resolution mapping of localized phonon modes at grain boundaries. Nano Lett. 23, 5975–5980 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

Article 
CAS 

Google Scholar
 

Sirenko, A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Huang, J. K. et al. High-kappa perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Casella, L. & Zaccone, A. Soft mode theory of ferroelectric phase transitions in the low-temperature phase. J. Phys. Condens. Matter 33, 165401 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Burns, G. & Dacol, F. H. Lattice modes in ferroelectric perovskites. III. Soft modes in BaTiO3. Phys. Rev. B 18, 5750–5755 (1978).

Article 
ADS 
CAS 

Google Scholar
 

Tian, Z. et al. Preparation of nano BaTiO3‐based ceramics for multilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc. 92, 830–833 (2009).

Article 
CAS 

Google Scholar
 

Jeong, D. S. et al. Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sun, H. et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He, R. et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics. Phys. Rev. B 105, 064104 (2022).

Article 
ADS 
CAS 

Google Scholar
 

van der Marel, D., Barantani, F. & Rischau, C. W. Possible mechanism for superconductivity in doped SrTiO3. Phys. Rev. Res. 1, 013003 (2019).

Article 

Google Scholar
 

Niedermeier, C. A. et al. Phonon scattering limited mobility in the representative cubic perovskite semiconductors SrGeO3, BaSnO3, and SrTiO3. Phys. Rev. B 101, 125206 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Smith, J., Huang, Z., Gao, W., Zhang, G. & Chi, M. Atomic resolution cryogenic 4D-STEM imaging via robust distortion correction. ACS Nano 17, 11327–11334 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Zeiger, P. M. & Rusz, J. Efficient and versatile model for vibrational STEM-EELS. Phys. Rev. Lett. 124, 025501 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zeiger, P. M. & Rusz, J. Frequency-resolved frozen phonon multislice method and its application to vibrational electron energy loss spectroscopy using parallel illumination. Phys. Rev. B 104, 104301 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Cancellieri, C. et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 7, 10386 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Krivanek, O. et al. Damage-free analysis of biological materials by vibrational spectroscopy in the EM. Microsc. Microanal. 26, 108–110 (2020).

Article 

Google Scholar
 

Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Nelson, C. T. et al. Domain dynamics during ferroelectric switching. Science 334, 968–971 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Spiecker, E. Determination of crystal polarity from bend contours in transmission electron microscope images. Ultramicroscopy 92, 111–132 (2002).

Article 
CAS 
PubMed 

Google Scholar
 

Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yan, X. et al. Curvature-induced one-dimensional phonon polaritons at edges of folded boron nitride sheets. Nano Lett. 22, 9319–9326 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Culjak, I., Abram, D., Pribanic, T., Dzapo, H. & Cifrek, M. A brief introduction to OpenCV. In Proc. 35th International Convention MIPRO (ed. Biljanović, P.) 1725–1730 (IEEE, 2012).

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Article 
ADS 

Google Scholar
 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Article 
ADS 
CAS 

Google Scholar
 

Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).

Article 
ADS 
CAS 

Google Scholar
 

Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

Article 
CAS 

Google Scholar
 

Carreras, A. phonoLAMMPS Documentation. GitHub https://github.com/abelcarreras/phonolammps (2023).

Carreras, A., Togo, A. & Tanaka, I. DynaPhoPy: a code for extracting phonon quasiparticles from molecular dynamics simulations. Comput. Phys. Commun. 221, 221–234 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).

Article 
CAS 

Google Scholar
 

Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn 92, 012001 (2023).

Article 
ADS 

Google Scholar
 

Zhang, Y. et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).

Article 
MathSciNet 
CAS 

Google Scholar
 

Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Servoin, J. L., Luspin, Y. & Gervais, F. Infrared dispersion in SrTiO3 at high temperature. Phys. Rev. B 22, 5501–5506 (1980).

Article 
ADS 
CAS 

Google Scholar
 

Stirling, W. G. Neutron inelastic scattering study of the lattice dynamics of strontium titanate: harmonic models. J. Phys. C 5, 2711 (1972).

Article 
ADS 
CAS 

Google Scholar
 

Zhou, J.-J., Hellman, O. & Bernardi, M. Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO3 perovskite from first principles. Phys. Rev. Lett. 121, 226603 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Scalabrin, A., Chaves, A. S., Shim, D. S. & Porto, S. P. S. Temperature dependence of the A1 and E optical phonons in BaTiO3. Phys. Status Solidi B 79, 731–742 (1977).

Article 
ADS 
CAS 

Google Scholar
 

Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 21, 215901 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Evarestov, R. A. & Bandura, A. V. First-principles calculations on the four phases of BaTiO3. J. Comput. Chem. 33, 1123–1130 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Ehsan, S., Arrigoni, M., Madsen, G. K. H., Blaha, P. & Tröster, A. First-principles self-consistent phonon approach to the study of the vibrational properties and structural phase transition of BaTiO3. Phys. Rev. B 103, 094108 (2021).

Article 
ADS 
CAS 

Google Scholar