Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998).
Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. https://arxiv.org/abs/quant-ph/0001106 (2000).
Morita, S. & Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 49, https://doi.org/10.1063/1.2995837 (2008).
Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061 (2008).
Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).
Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).
Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Superconductivity 24, 1–10 (2014).
Johnson, M. W. et al. A scalable control system for a superconducting adiabatic quantum optimization processor. Superconductor Sci. Technol. 23, 065004 (2010).
Lanting, T. et al. Entanglement in a quantum annealing processor. Phys. Rev. X 4, 021041 (2014).
Albash, T., Hen, I., Spedalieri, F. M. & Lidar, D. A. Reexamination of the evidence for entanglement in a quantum annealer. Phys. Rev. A 92, 062328 (2015).
King, A. D. et al. Coherent quantum annealing in a programmable 2000-qubit Ising chain. Nat. Phys. 18, 1324–1328 (2022).
King, A. D. et al. Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature 617, 61–66 (2023).
King, A. D. et al. Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets. Nat. Commun. 12, 1113 (2021).
King, A. D. et al. Computational supremacy in quantum simulation. https://arxiv.org/abs/2403.00910 (2024).
Tasseff, B. et al. On the emerging potential of quantum annealing hardware for combinatorial optimization. J Heuristics 30, 325–358 (2022).
Pelofske, E., Bärtschi, A. & Eidenbenz, S. Short-depth QAOA circuits and quantum annealing on higher-order Ising models. npj Quantum Inf. (2024).
Pelofske, E., Bärtschi, A. & Eidenbenz, S. Quantum annealing vs. QAOA: 127 qubit higher-order ising problems on NISQ computers. In Proc. International Conference on High Performance Computing ISC HPC’23, 240–258 (2023).
King, A. D. et al. Quantum annealing simulation of out-of-equilibrium magnetization in a spin-chain compound. PRX Quantum 2, 030317 (2021).
Bauza, H. M. & Lidar, D. A. Scaling advantage in approximate optimization with quantum annealing. https://arxiv.org/abs/2401.07184 (2024).
Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).
Born, M. & Fock, V. Beweis des adiabatensatzes. Z. Phys. 51, 165–180 (1928).
Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–15 (2014).
Boros, E., Hammer, P. & Tavares, G. Preprocessing of unconstrained quadratic binary optimization. Rutcor Res. Rep. RRR 10-2006, 1–58 (2006).
Boros, E., Hammer, P. & Tavares, G. Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO). J. Heuristics 13, 99–132 (2007).
Venturelli, D. et al. Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 031040 (2015).
Pudenz, K. L., Albash, T. & Lidar, D. A. Quantum annealing correction for random ising problems. Phys. Rev. A 91, 042302 (2015).
King, A. D., Hoskinson, E., Lanting, T., Andriyash, E. & Amin, M. H. Degeneracy, degree, and heavy tails in quantum annealing. Phys. Rev. A 93, https://doi.org/10.1103/PhysRevA.93.052320 (2016).
Mehta, V., Jin, F., De Raedt, H. & Michielsen, K. Quantum annealing for hard 2-satisfiability problems: distribution and scaling of minimum energy gap and success probability. Phys. Rev. A 105, 062406 (2022).
Pelofske, E., Hahn, G. & Djidjev, H. N. Parallel quantum annealing. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-08394-8 (2022).
Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, https://doi.org/10.1103/PhysRevX.8.031016 (2018).
Pelofske, E., Hahn, G. & Djidjev, H. N. Solving larger maximum clique problems using parallel quantum annealing. Quantum Inf. Process. 22, https://doi.org/10.1007/s11128-023-03962-x (2023).
Pelofske, E., Hahn, G. & Djidjev, H. N. Noise dynamics of quantum annealers: estimating the effective noise using idle qubits. Quantum Sci. Technol. 8, 035005 (2023).
Vyskočil, T., Pakin, S. & Djidjev, H. N. Embedding inequality constraints for quantum annealing optimization. In Proc. First International Workshop on Quantum Technology and Optimization Problems, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1, 11–22 https://doi.org/10.1007/978-3-030-14082-3_2 (Springer, 2019).
Könz, M. S., Lechner, W., Katzgraber, H. G. & Troyer, M. Embedding overhead scaling of optimization problems in quantum annealing. PRX Quantum 2, 040322 (2021).
Cai, J., Macready, W. G. & Roy, A. A practical heuristic for finding graph minors. https://doi.org/10.48550/arXiv.1406.2741 (2014).
Lucas, A. Hard combinatorial problems and minor embeddings on lattice graphs. Quantum Inf. Process. 18, 1–38 (2019).
Choi, V. Minor-embedding in adiabatic quantum computation: II. minor-universal graph design. Quantum Inf. Process. 10, 343–353 (2011).
Choi, V. Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Inf. Process. 7, 193–209 (2008).
Pearson, A., Mishra, A., Hen, I. & Lidar, D. A. Analog errors in quantum annealing: doom and hope. npj Quantum Inf. 5, 107 (2019).
Lanting, T. et al. Probing environmental spin polarization with superconducting flux qubits. arXiv preprint. https://doi.org/10.48550/arXiv.2003.14244 (2020).
Nelson, J., Vuffray, M., Lokhov, A. Y. & Coffrin, C. Single-qubit fidelity assessment of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021).
Zaborniak, T. & de Sousa, R. Benchmarking hamiltonian noise in the d-wave quantum annealer. IEEE Trans. Quantum Eng. 2, 1–6 (2021).
Grant, E. & Humble, T. S. Benchmarking embedded chain breaking in quantum annealing. Quantum Sci. Technol. 7, 025029 (2022).
Pelofske, E., Hahn, G. & Djidjev, H. N. Reducing quantum annealing biases for solving the graph partitioning problem. In: Proc. 18th ACM International Conference on Computing Frontiers, CF’21, 133–139. https://doi.org/10.1145/3457388.3458672 (Association for Computing Machinery, 2021).
Vinci, W., Albash, T., Paz-Silva, G., Hen, I. & Lidar, D. A. Quantum annealing correction with minor embedding. Phys. Rev. A 92, 042310 (2015).
Vinci, W., Albash, T. & Lidar, D. A. Nested quantum annealing correction. npj Quantum Inf. 2, 1–6 (2016).
Pudenz, K. L., Albash, T. & Lidar, D. A. Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 1–10 (2014).
Hen, I. et al. Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015).
King, A. D., Lanting, T. & Harris, R. Performance of a quantum annealer on range-limited constraint satisfaction problems. 1502.02098 (2015).
Perera, D., Hamze, F., Raymond, J., Weigel, M. & Katzgraber, H. Computational hardness of spin-glass problems with tile-planted solutions. Phys. Rev. E 101, 023316 (2020).
Wang, W., Mandrà, S. & Katzgraber, H. Patch-planting spin-glass solution for benchmarking. Phys. Rev. E 96, 023312 (2017).
Pei, Y., Manukian, H. & Di Ventra, M. Generating weighted MAX-2-SAT instances with frustrated loops: an RBM case study. J. Mach. Learn. Res. 21, 1–55 (2020).
Hamze, F. et al. From near to eternity: spin-glass planting, tiling puzzles, and constraint-satisfaction problems. Phys. Rev. E 97, 043303 (2018).
Kowalsky, M., Albash, T., Hen, I. & Lidar, D. 3-regular three-XORSAT planted solutions benchmark of classical and quantum heuristic optimizers. Quantum Sci. Technol. 7, 025008 (2022).
Hen, I. Equation planting: a tool for benchmarking ising machines. Phys. Rev. Appl. 12, 011003 (2019).
Perera, D. et al. Chook—a comprehensive suite for generating binary optimization problems with planted solutions 1–8. https://doi.org/10.48550/arXiv.2005.14344 (2021).
Carleton Coffrin. D-Wave Instance Generator (D-WIG). https://github.com/lanl-ansi/dwig (2022).
King, J. et al. Quantum annealing amid local ruggedness and global frustration. https://arxiv.org/abs/1701.04579 (2017).
Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).
Mandrá, S., Katzgraber, H. G. & Thomas, C. The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Sci. Technol. 2, 038501 (2017).
Hahn, G., Pelofske, E. & Djidjev, H. N. Posiform planting: generating QUBO instances for benchmarking. Front. Comput. Sci. 5, https://doi.org/10.3389/fcomp.2023.1275948 (2023).
Isermann, S. A note on posiform planting (2024).
Aspvall, B., Plass, M. & Tarjan, R. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8, 121–123 (1979).
Dattani, N., Szalay, S. & Chancellor, N. Pegasus:the second connectivity graph for large-scale quantum annealing hardware. https://arxiv.org/abs/1901.07636 (2019).
Boothby, K., Bunyk, P., Raymond, J. & Roy, A. Next-generation topology of d-wave quantum processors. https://arxiv.org/abs/2003.00133 (2020).
Boothby, K., King, A. D. & Raymond, J. Zephyr topology of D-Wave quantum processors. https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf (2021).
Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014).
Weigel, M., Katzgraber, H. G., Machta, J., Hamze, F. & Andrist, R. S. Erratum: glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines [phys. rev. x 4, 021008 (2014)]. Phys. Rev. X 5, 019901 (2015).
Jaumá, G., García-Ripoll, J. J. & Pino, M. Exploring quantum annealing architectures: a spin glass perspective. 2307.13065 (2023).
Matsuda, Y., Nishimori, H. & Katzgraber, H. G. Quantum annealing for problems with ground-state degeneracy. J. Phys. Conf. Ser. 143, 012003 (2009).
Zhu, Z., Ochoa, A. J. & Katzgraber, H. G. Fair sampling of ground-state configurations of binary optimization problems. Phys. Rev. E 99, https://doi.org/10.1103/PhysRevE.99.063314 (2019).
Mandrà, S., Zhu, Z. & Katzgraber, H. G. Exponentially biased ground-state sampling of quantum annealing machines with transverse-field driving hamiltonians. Phys. Rev. Lett. 118, 070502 (2017).
Albash, T., Rønnow, T., Troyer, M. & Lidar, D. Reexamining classical and quantum models for the d-wave one processor: the role of excited states and ground state degeneracy. Eur. Phys. J. Spec. Top. 224, 111–129 (2015).
Zhang, B. H., Wagenbreth, G., Martin-Mayor, V. & Hen, I. Advantages of unfair quantum ground-state sampling. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-01096-6 (2017).
Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum annealing. Nat. Commun. 4, https://doi.org/10.1038/ncomms3067 (2013).
Könz, M. S., Mazzola, G., Ochoa, A. J., Katzgraber, H. G. & Troyer, M. Uncertain fate of fair sampling in quantum annealing. Phys. Rev. A 100, https://doi.org/10.1103/PhysRevA.100.030303 (2019).
Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Pelofske, E. Comparing three generations of D-Wave quantum annealers for minor embedded combinatorial optimization problems. Quantum Science and Technology, 10, https://doi.org/10.1088/2058-9565/adb029 (2025).
Willsch, D. et al. Benchmarking advantage and D-Wave 2000Q quantum annealers with exact cover problems. Quantum Inf. Process. 21, 141 (2022).
Morrell, Z. et al. Signatures of open and noisy quantum systems in single-qubit quantum annealing. Phys. Rev. Appl. 19, 034053 (2023).
Grant, E., Humble, T. S. & Stump, B. Benchmarking quantum annealing controls with portfolio optimization. Phys. Rev. Appl. 15, 014012 (2021).
Gilbert, V., Rodriguez, J. & Louise, S. Benchmarking quantum annealers with near-optimal minor-embedded instances. https://arxiv.org/html/2405.01378v1 (2024).
Boros, E. & Hammer, P. Pseudo-boolean optimization. Discret. Appl Math. 123, 155–225 (2002).
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In: Proc. 7th Python in Science Conference SciPy’08, 11–15. https://www.osti.gov/biblio/960616 (2008).
Kernighan, B. W. & Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970).
Pelofske, E., Hahn, G., O’Malley, D., Djidjev, H. N. & Alexandrov, B. S. Quantum annealing algorithms for boolean tensor networks. Sci. Rep. 12, https://doi.org/10.1038/s41598-022-12611-9 (2022).
Albash, T., Vinci, W., Mishra, A., Warburton, P. A. & Lidar, D. A. Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91, 042314 (2015).
IBM ILOG CPLEX. V12.10.0: User’s Manual for CPLEX. 46, 157 (International Business Machines Corporation, 2019).
Eén, N. & Sörensson, N. MiniSat solver. http://minisat.se (2023).
Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).
D-Wave Systems. Simulated annealing D-Wave Github. https://github.com/dwavesystems/dwave-neal (2024).
Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. https://www.gurobi.com (2024).