Ebbesen, T. W. Hybrid light-matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

CAS 

Google Scholar
 

Feist, J., Galego, J. & Garcia-Vidal, F. J. Polaritonic chemistry with organic molecules. ACS Photonics 5, 205 (2018).

CAS 

Google Scholar
 

Dunkelberger, A. D., Simpkins, B. S., Vurgaftman, I. & Owrutsky, J. C. Vibration-cavity polariton chemistry and dynamics. Annu. Rev. Phys. Chem. 73, 429–451 (2022).

ADS 
CAS 

Google Scholar
 

Tibben, D. J. et al. Molecular energy transfer under the strong light–matter interaction regime. Chem. Rev. 123, 8044–8068 (2023).

CAS 

Google Scholar
 

Hirai, K., Hutchison, J. A. & Uji-i, H. Molecular chemistry in cavity strong coupling. Chem. Sov. 123, 8099–8126 (2023).

CAS 

Google Scholar
 

Simpkins, B. S., Dunkelberger, A. D. & Vurgaftman, I. Control, modulation, and analytical descriptions of vibrational strong coupling. Chem. Sov. 123, 5020–5048 (2023).

CAS 

Google Scholar
 

Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

ADS 
CAS 

Google Scholar
 

Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).

CAS 

Google Scholar
 

Hirai, K., Takeda, R., Hutchison, J. A. & Uji-i, H. Modulation of prins cyclization by vibrational strong coupling. Angew. Chem. Int. Ed. 59, 5332–5335 (2020).

CAS 

Google Scholar
 

Ahn, W., Triana, J. F., Recabal, F., Herrera, F. & Simpkins, B. S. Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities. Science 380, 1165–1168 (2023).

ADS 
CAS 

Google Scholar
 

Grafton, A. B. et al. Excited-state vibration-polariton transitions and dynamics in nitroprusside. Nat. Commun. 12, 1–9 (2021).


Google Scholar
 

Xiang, B. et al. Intermolecular vibrational energy transfer enabled by microcavity strong light-matter coupling. Science 368, 665–667 (2020).

ADS 
CAS 

Google Scholar
 

Chen, T.-T., Du, M., Yang, Z., Yuen-Zhou, J. & Xiong, W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 378, 790–794 (2022).

ADS 
CAS 

Google Scholar
 

George, J. et al. Multiple rabi splittings under ultrastrong vibrational coupling. Phys. Rev. Lett. 117, 1–5 (2016).


Google Scholar
 

Wright, A. D., Nelson, J. C. & Weichman, M. L. Rovibrational polaritons in gas-phase methane. J. Am. Chem. Soc. 145, 5982–5987 (2023).

CAS 

Google Scholar
 

Lather, J., Bhatt, P., Thomas, A., Ebbesen, T. W. & George, J. Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules. Angew. Chem. Int. Ed. 58, 10635–10638 (2019).

CAS 

Google Scholar
 

Li, X., Mandal, A. & Huo, P. Theory of mode-selective chemistry through polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 12, 6974–6982 (2021).

CAS 

Google Scholar
 

Schäfer, C., Flick, J., Ronca, E., Narang, P. & Rubio, A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat. Commun. 13, 7817 (2022).

ADS 
PubMed Central 

Google Scholar
 

Sun, J. & Vendrell, O. Modification of thermal chemical rates in a cavity via resonant effects in the collective regime. J. Phys. Chem. Lett. 14, 8397–8404 (2023).

CAS 

Google Scholar
 

Mandal, A. et al. Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics. Chem. Rev. 123, 9786–9879 (2023).

CAS 
PubMed Central 

Google Scholar
 

Dunkelberger, A., Spann, B., Fears, K., Simpkins, B. & Owrutsky, J. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat. Commun. 7, 13504 (2016).

ADS 
CAS 
PubMed Central 

Google Scholar
 

Wang, D. S., Neuman, T., Yelin, S. F. & Flick, J. Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution. J. Phys. Chem. Lett. 13, 3317–3324 (2022).

CAS 
PubMed Central 

Google Scholar
 

Yu, Q. & Bowman, J. M. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling. Nat. Commun. 14, 3527 (2023).

ADS 
CAS 
PubMed Central 

Google Scholar
 

Lindoy, L. P., Mandal, A. & Reichman, D. R. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat. Comm. 14, 2733 (2023).

ADS 
CAS 

Google Scholar
 

Schafer, C., Fojt, J., Lindgren, E. & Erhart, P. Machine learning for polaritonic chemistry: accessing chemical kinetics. J. Am. Chem. Soc. 146, 5402–5413 (2024).

PubMed Central 

Google Scholar
 

Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 10, 4685 (2019).

ADS 
PubMed Central 

Google Scholar
 

Campos-Gonzalez-Angulo, J. A., Ribeiro, R. F. & Yuen-Zhou, J. Generalization of the Tavis–Cummings model for multi-level anharmonic systems. New J. Phys. 23, 063081 (2021).

ADS 
MathSciNet 

Google Scholar
 

Mandal, A., Li, X. & Huo, P. Theory of vibrational polariton chemistry in the collective coupling regime. J. Chem. Phys. 156, 014101 (2022).

ADS 
CAS 

Google Scholar
 

Li, T. E., Subotnik, J. E. & Nitzan, A. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. USA 117, 18324–18331 (2020).

ADS 
CAS 
PubMed Central 

Google Scholar
 

Li, T. E. & Hammes-Schiffer, S. QM/MM modeling of vibrational polariton induced energy transfer and chemical dynamics. J. Am. Chem. Soc. 145, 377–384 (2023).

CAS 

Google Scholar
 

Fregoni, J., Garcia-Vidal, F. J. & Feist, J. Theoretical challenges in polaritonic chemistry. ACS Photonics 9, 1096–1107 (2022).

CAS 
PubMed Central 

Google Scholar
 

Anderson, M. C., Woods, E. J., Fay, T. P., Wales, D. J. & Limmer, D. T. On the mechanism of polaritonic rate suppression from quantum transition paths. J. Phys. Chem. Lett. 14, 6888–6894 (2023).

CAS 

Google Scholar
 

Fiechter, M. R., Runeson, J. E., Lawrence, J. E. & Richardson, J. O. How quantum is the resonance behavior in vibrational polariton chemistry? J. Phys. Chem. Lett. 14, 8261–8267 (2023).

CAS 
PubMed Central 

Google Scholar
 

Sidler, D., Schafer, C., Ruggenthaler, M. & Rubio, A. Polaritonic chemistry: collective strong coupling implies strong local modification of chemical properties. J. Phys. Chem. Lett. 12, 508–516 (2021).

CAS 

Google Scholar
 

Ruggenthaler, M., Sidler, D. & Rubio, A. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 123, 11191–11229 (2023).

CAS 
PubMed Central 

Google Scholar
 

Sidler, D. et al. Unraveling a cavity-induced molecular polarization mechanism from collective vibrational strong coupling. J. Phys. Chem. Lett. 15, 5208–5214 (2023).


Google Scholar
 

Lather, J. & George, J. Improving enzyme catalytic efficiency by cooperative vibrational strong coupling of water. J. Phys. Chem. Lett. 12, 379–384 (2021).

CAS 

Google Scholar
 

Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Inherent promotion of ionic conductivity via collective vibrational strong coupling of water with the vacuum electromagnetic field. J. Am. Chem. Soc. 144, 12177–12183 (2022).

CAS 

Google Scholar
 

Fukushima, T., Yoshimitsu, S. & Murakoshi, K. Vibrational coupling of water from weak to ultrastrong coupling regime via cavity mode tuning. J. Phys. Chem. C 125, 25832–25840 (2021).

CAS 

Google Scholar
 

Lieberherr, A. Z., Furniss, S. T., Lawrence, J. E. & Manolopoulos, D. E. Vibrational strong coupling in liquid water from cavity molecular dynamics. J. Chem. Phys. 158, 234106 (2023).

ADS 
CAS 

Google Scholar
 

Kadyan, A., Suresh, M. P., Johns, B. & George, J. Understanding the nature of vibro-polaritonic states in water and heavy water. ChemPhysChem 25, e202300560 (2024).

CAS 

Google Scholar
 

Bakker, H. & Skinner, J. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

CAS 

Google Scholar
 

Pakoulev, A., Wang, Z., Pang, Y. & Dlott, D. D. Vibrational energy relaxation pathways of water. Chem. Phys. Lett. 380, 404–410 (2003).

ADS 
CAS 

Google Scholar
 

Larsen, O. F. & Woutersen, S. Vibrational relaxation of the H2O bending mode in liquid water. J. Chem. Phys. 121, 12143–12145 (2004).

ADS 
CAS 

Google Scholar
 

Lindner, J. et al. Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006).

ADS 
CAS 

Google Scholar
 

Woutersen, S. & Bakker, H. J. Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999).

ADS 
CAS 

Google Scholar
 

Zhang, Z., Piatkowski, L., Bakker, H. J. & Bonn, M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3, 888–893 (2011).

CAS 

Google Scholar
 

Yu, C. C. et al. Vibrational couplings and energy transfer pathways of water’s bending mode. Nat. Commun. 11, 1–8 (2020).

ADS 
CAS 

Google Scholar
 

Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

ADS 
CAS 

Google Scholar
 

Rey, R., Ingrosso, F., Elsaesser, T. & Hynes, J. T. Pathways for H2O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113, 8949–8962 (2009).

CAS 

Google Scholar
 

Imoto, S., Xantheas, S. S. & Saito, S. Ultrafast dynamics of liquid water: energy relaxation and transfer processes of the OH stretch and the HOH bend. J. Phys. Chem. B 119, 11068–11078 (2015).

CAS 

Google Scholar
 

Lock, A. J. & Bakker, H. J. Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117, 1708–1713 (2002).

ADS 
CAS 

Google Scholar
 

Rey, R., Møller, K. B. & Hynes, J. T. Ultrafast vibrational population dynamics of water and related systems: a theoretical perspective. Chem. Rev. 104, 1915–1928 (2004).

CAS 

Google Scholar
 

Lawrence, C. P. & Skinner, J. L. Vibrational energy relaxation. J. Chem. Phys. 117, 5827–5838 (2002).

ADS 
CAS 

Google Scholar
 

Auer, B., Yang, M. & Skinner, J. Two-dimensional infrared spectroscopy and ultrafast anisotropy decay of water. J. Chem. Phys. 132, 224503 (2010).

ADS 

Google Scholar
 

Fecko, C., Eaves, J., Loparo, J., Tokmakoff, A. & Geissler, P. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003).

ADS 
CAS 

Google Scholar
 

Van der Post, S. T. et al. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015).

ADS 

Google Scholar
 

Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

CAS 

Google Scholar
 

Ishiyama, T. Ab initio molecular dynamics study on energy relaxation path of hydrogen-bonded OH vibration in bulk water. J. Chem. Phys. 154, 204502 (2021).

ADS 
CAS 

Google Scholar
 

Searcy, J.-Q. & Fenn, J. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).

ADS 
CAS 

Google Scholar
 

Lagutschenkov, A., Fanourgakis, G. S., Niedner-Schatteburg, G. & Xantheas, S. S. The spectroscopic signature of the “all-surface” to “internally solvated” structural transition in water clusters in the n= 17–21 size regime. J. Chem. Phys. 122, 194310 (2005).

ADS 

Google Scholar
 

Cui, J., Liu, H. & Jordan, K. D. Theoretical characterization of the (H2O) 21 cluster: application of an n-body decomposition procedure. J. Phys. Chem. B 110, 18872–18878 (2006).

CAS 

Google Scholar
 

Yang, N. et al. Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage. Proc. Natl. Acad. Sci. USA 117, 26047–26052 (2020).

ADS 
CAS 
PubMed Central 

Google Scholar
 

Yu, Q. & Hammes-Schiffer, S. Multidimensional quantum dynamical simulation of infrared spectra under polaritonic vibrational strong coupling. J. Phys. Chem. Lett. 13, 11253–11261 (2022).

CAS 

Google Scholar
 

Yu, Q. & Bowman, J. M. Fully quantum simulation of polaritonic vibrational spectra of large cavity-molecule system. J. Chem. Theory Comput. 20, 4278–4287 (2024).

CAS 

Google Scholar
 

Yu, Q. et al. q-AQUA: a many-mody CCSD (T) water potential, including four-body interactions, demonstrates the quantum nature of water from clusters to the liquid phase. J. Phys. Chem. Lett. 13, 5068–5074 (2022).

CAS 

Google Scholar
 

Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of the IR spectrum of liquid water using Ab initio and model potential and dipole moment surfaces and comparison with experiment. J. Chem. Phys. 142, 194502 (2015).

ADS 

Google Scholar
 

Liu, H., Wang, Y. & Bowman, J. M. Ab initio deconstruction of the vibrational relaxation pathways of dilute HOD in ice Ih. J. Am. Chem. Soc. 136, 5888–5891 (2014).

CAS 

Google Scholar
 

Bertie, J. E. & Lan, Z. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 °C between 15,000 and 1 cm-1. Appl. Spectrosc. 50, 1047–1057 (1996).

ADS 
CAS 

Google Scholar
 

Wang, Y. & Bowman, J. M. IR spectra of the water hexamer: theory, with inclusion of the monomer bend overtone, and experiment are in agreement. J. Phys. Chem. Lett. 4, 1104–1108 (2013).

CAS 

Google Scholar
 

Krupp, N. & Vendrell, O. Collective rovibronic dynamics of a diatomic gas coupled by cavity. Phys. Rev. Res. 6, 033134 (2024).

CAS 

Google Scholar
 

Fan, L.-B. et al. Quantum coherent control of a single molecular-polariton rotation. Phys. Rev. Lett. 130, 043604 (2023).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Fletcher, T., Zhu, A., Lawrence, J. E. & Manolopoulos, D. E. Fast quasi-centroid molecular dynamics. J. Chem. Phys. 155, 231101 (2021).

ADS 
CAS 

Google Scholar
 

Musil, F., Zaporozhets, I., Noé, F., Clementi, C. & Kapil, V. Quantum dynamics using path integral coarse-graining. J. Chem. Phys. 157, 181102 (2022).

ADS 
CAS 

Google Scholar
 

Althorpe, S. C. Path integral simulations of condensed-phase vibrational spectroscopy. Annu. Rev. of Phys. Chem. 75, 397–420 (2024).

CAS 

Google Scholar
 

Partridge, H. & Schwenke, D. W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106, 4618 (1997).

ADS 
CAS 

Google Scholar
 

Liu, H., Wang, Y. & Bowman, J. M. Quantum calculations of intramolecular IR spectra of ice models using ab initio potential and dipole moment surfaces. J. Phys. Chem. Lett. 3, 3671–3676 (2012).

CAS 

Google Scholar
 

Lodi, L., Tennyson, J. & Polyansky, O. L. A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule. J. Chem. Phys. 135, 034113 (2011).

ADS 

Google Scholar
 

Flick, L. J., Appel, H., Ruggenthaler, M. & Rubio, A. Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems. J. Chem. Theory Comput. 13, 1616–1625 (2017).

CAS 
PubMed Central 

Google Scholar
 

Wang, Y. & Bowman, J. M. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J. Chem. Phys. 134, 154510 (2011).

ADS 

Google Scholar
 

Yu, Q. & Bowman, J. M. High-level quantum calculations of the IR spectra of the Eigen, Zundel, and Ring isomers of H+ (H2O)4 find a single match to experiment. J. Am. Chem. Soc. 139, 10984–10987 (2017).

CAS 

Google Scholar
 

Kraemer, D. et al. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. USA 105, 437–442 (2008).

ADS 
CAS 
PubMed Central 

Google Scholar
 

Bowman, J. M., Carter, S. & Huang, X. MULTIMODE: a code to calculate rovibrational energies of polyatomic molecules. Int. Rev. Phys. Chem. 22, 533–549 (2003).

CAS 

Google Scholar
 

Yu, Q. et al. Vibrational Dynamics of Molecules 229–339 (World Scientific Publishing, 2022).

Burcl, R., Carter, S. & Handy, N. C. Infrared intensities from the MULTIMODE code. Chem. Phys. Lett. 380, 237–244 (2003).

ADS 
CAS 

Google Scholar
 

Yu, Q., Zhang, D. H. & Bowman, J. M. Source data for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15681442 (2025).

Yu, Q., Zhang, D. H. & Bowman, J. M. Codes for theoretical and quantum mechanical deconstruction of vibrational energy transfer pathways modified by collective vibrational strong coupling. https://doi.org/10.5281/zenodo.15680998 (2025).