Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Jin, L. & Yang, S. Engineering kirigami frameworks toward real-world applications. Adv. Mater. 36, 2308560 (2024).

Article 
CAS 

Google Scholar
 

Tao, J., Khosravi, H., Deshpande, V. & Li, S. Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 10, 2204733 (2023).

Article 

Google Scholar
 

Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

Article 
PubMed 

Google Scholar
 

Branyan, C., Rafsanjani, A., Bertoldi, K., Hatton, R. L. & Mengüç, Y. Curvilinear kirigami skins let soft bending actuators slither faster. Front. Robot. AI 9, 872007 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dias, M. A. et al. Kirigami actuators. Soft Matter 13, 9087–9092 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y., Vella, K. & Holmes, D. P. Grasping with kirigami shells. Sci. Robot. 6, eabd6426 (2021).

Article 
PubMed 

Google Scholar
 

Forte, A. E., Melancon, D., Zanati, M., De Giorgi, M. & Bertoldi, K. Chiral mechanical metamaterials for tunable optical transmittance. Adv. Funct. Mater. 33, 2214897 (2023).

Article 
CAS 

Google Scholar
 

Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami. Phys. Rev. Res. 3, 043030 (2021).

Article 
CAS 

Google Scholar
 

Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).

Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, Y., Dias, M. A. & Holmes, D. P.Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).

Article 
CAS 

Google Scholar
 

Isobe, M. & Okumura, K. Continuity and discontinuity of kirigami’s high-extensibility transition: a statistical-physics viewpoint. Phys. Rev. Res. 1, 022001 (2019).

Article 
CAS 

Google Scholar
 

Cho, H. & Kim, D.-N. Controlling the stiffness of bistable kirigami surfaces via spatially varying hinges. Mater. Des. 231, 112053 (2023).

Article 

Google Scholar
 

Tani, M. et al. Curvy cuts: programming axisymmetric kirigami shapes. Extreme Mech. Lett. 71, 102195 (2024).

Article 

Google Scholar
 

Lamoureux, D., Ramananarivo, SD., Melancon, & Gosselin, F. P. Simulating flow-induced reconfiguration by coupling corotational plate finite elements with a simplified pressure drag. Extreme Mech. Lett. 74, 102271 (2024).

Article 

Google Scholar
 

White, F. M. & Wolf, D. F. A theory of three-dimensional parachute dynamic stability. J. Aircr. 5, 86–92 (1968).

Article 

Google Scholar
 

Marzin, T., Le Hay, K., de Langre, E. & Ramananarivo, S. Flow-induced deformation of kirigami sheets. Phys. Rev. Fluids 7, 023906 (2022).

Article 
ADS 

Google Scholar
 

Carleton, A. G. & Modarres-Sadeghi, Y. Kirigami sheets in fluid flow. Extreme Mech. Lett. 71, 102198 (2024).

Gamble, L., Lamoureux, A. & Shtein, M. Multifunctional composite kirigami skins for aerodynamic control. Appl. Phys. Lett. 117, 254105 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wen, X. et al. Dynamic kirigami structures for wake flow control behind a circular cylinder. Phys. Fluids 35, 011707 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).

Article 

Google Scholar
 

Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Schouveiler, L. & Boudaoud, A. The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71–80 (2006).

Article 
ADS 

Google Scholar
 

Gosselin, F., de Langre, E. & Machado-Almeida, B. A. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).

Article 
ADS 
CAS 

Google Scholar
 

De Langre, E., Gutierrez, A. & Cossé, J. On the scaling of drag reduction by reconfiguration in plants. C. R. Mec. 340, 35–40 (2012).

Article 
ADS 

Google Scholar
 

Gosselin, F. P. Mechanics of a plant in fluid flow. J. Exp. Bot. 70, 3533–3548 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Lin, Y. L., Pezzulla, M. & Reis, P. M. Fluid–structure interactions of bristled wings: the trade-off between weight and drag. J. R. Soc. Interface 20, 20230266 (2023).

Zhang, X. & Nepf, H. Flow‐induced reconfiguration of aquatic plants, including the impact of leaf sheltering. Limnol. Oceanogr. 65, 2697–2712 (2020).

Article 
ADS 

Google Scholar
 

Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 60, 46–61 (2022).

Article 

Google Scholar
 

Schouveiler, L. & Eloy, C. Flow-induced draping. Phys. Rev. Lett. 111, 064301 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Gomez, M., Moulton, D. E. & Vella, D.Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Wang, Z. et al. Towards energy harvesting through flow-induced snap-through oscillations. Int. J. Mech. Sci. 254, 108428 (2023).

Article 

Google Scholar
 

Minami, S. & Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 225, 1–14 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Biviano, M. D. & Jensen, K. H. Settling aerodynamics is a driver of symmetry in deciduous tree leaves. J. R. Soc. Interface 22, 20240654 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Hua, R.-N., Zhu, L. & Lu, X.-Y. Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 56–72 (2014).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Tumbling cards. Phys. Fluids 11, 1–3 (1999).

Article 
ADS 
CAS 

Google Scholar
 

Auguste, F., Magnaudet, J. & Fabre, D. Falling styles of disks. J. Fluid Mech. 719, 388–405 (2013).

Article 
ADS 

Google Scholar
 

Li, J. & Liu, Z. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637–1650 (2018).

Article 
CAS 

Google Scholar
 

Sun, Y. et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures 33, 3633–3643 (2021).

Article 

Google Scholar
 

Guttag, M., Karimi, H. H., Falcón, C. & Reis, P. M. Aeroelastic deformation of a perforated strip. Phys. Rev. Fluids 3, 014003 (2018).

Article 
ADS 

Google Scholar
 

Pratap, M., Agrawal, A. K. & Kumar, S. Design and selection criteria of main parachute for re entry space payload. Def. Sci. J. 69, 531–537 (2019).

Article 

Google Scholar