Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).
Jin, L. & Yang, S. Engineering kirigami frameworks toward real-world applications. Adv. Mater. 36, 2308560 (2024).
Tao, J., Khosravi, H., Deshpande, V. & Li, S. Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 10, 2204733 (2023).
Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).
Branyan, C., Rafsanjani, A., Bertoldi, K., Hatton, R. L. & Mengüç, Y. Curvilinear kirigami skins let soft bending actuators slither faster. Front. Robot. AI 9, 872007 (2022).
Dias, M. A. et al. Kirigami actuators. Soft Matter 13, 9087–9092 (2017).
Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).
Yang, Y., Vella, K. & Holmes, D. P. Grasping with kirigami shells. Sci. Robot. 6, eabd6426 (2021).
Forte, A. E., Melancon, D., Zanati, M., De Giorgi, M. & Bertoldi, K. Chiral mechanical metamaterials for tunable optical transmittance. Adv. Funct. Mater. 33, 2214897 (2023).
Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).
Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami. Phys. Rev. Res. 3, 043030 (2021).
Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).
Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).
Yang, Y., Dias, M. A. & Holmes, D. P.Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).
Isobe, M. & Okumura, K. Continuity and discontinuity of kirigami’s high-extensibility transition: a statistical-physics viewpoint. Phys. Rev. Res. 1, 022001 (2019).
Cho, H. & Kim, D.-N. Controlling the stiffness of bistable kirigami surfaces via spatially varying hinges. Mater. Des. 231, 112053 (2023).
Tani, M. et al. Curvy cuts: programming axisymmetric kirigami shapes. Extreme Mech. Lett. 71, 102195 (2024).
Lamoureux, D., Ramananarivo, SD., Melancon, & Gosselin, F. P. Simulating flow-induced reconfiguration by coupling corotational plate finite elements with a simplified pressure drag. Extreme Mech. Lett. 74, 102271 (2024).
White, F. M. & Wolf, D. F. A theory of three-dimensional parachute dynamic stability. J. Aircr. 5, 86–92 (1968).
Marzin, T., Le Hay, K., de Langre, E. & Ramananarivo, S. Flow-induced deformation of kirigami sheets. Phys. Rev. Fluids 7, 023906 (2022).
Carleton, A. G. & Modarres-Sadeghi, Y. Kirigami sheets in fluid flow. Extreme Mech. Lett. 71, 102198 (2024).
Gamble, L., Lamoureux, A. & Shtein, M. Multifunctional composite kirigami skins for aerodynamic control. Appl. Phys. Lett. 117, 254105 (2020).
Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).
Wen, X. et al. Dynamic kirigami structures for wake flow control behind a circular cylinder. Phys. Fluids 35, 011707 (2023).
Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).
Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).
Schouveiler, L. & Boudaoud, A. The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71–80 (2006).
Gosselin, F., de Langre, E. & Machado-Almeida, B. A. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).
De Langre, E., Gutierrez, A. & Cossé, J. On the scaling of drag reduction by reconfiguration in plants. C. R. Mec. 340, 35–40 (2012).
Gosselin, F. P. Mechanics of a plant in fluid flow. J. Exp. Bot. 70, 3533–3548 (2019).
Lin, Y. L., Pezzulla, M. & Reis, P. M. Fluid–structure interactions of bristled wings: the trade-off between weight and drag. J. R. Soc. Interface 20, 20230266 (2023).
Zhang, X. & Nepf, H. Flow‐induced reconfiguration of aquatic plants, including the impact of leaf sheltering. Limnol. Oceanogr. 65, 2697–2712 (2020).
Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 60, 46–61 (2022).
Schouveiler, L. & Eloy, C. Flow-induced draping. Phys. Rev. Lett. 111, 064301 (2013).
Gomez, M., Moulton, D. E. & Vella, D.Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502 (2017).
Wang, Z. et al. Towards energy harvesting through flow-induced snap-through oscillations. Int. J. Mech. Sci. 254, 108428 (2023).
Minami, S. & Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 225, 1–14 (2003).
Biviano, M. D. & Jensen, K. H. Settling aerodynamics is a driver of symmetry in deciduous tree leaves. J. R. Soc. Interface 22, 20240654 (2025).
Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).
Hua, R.-N., Zhu, L. & Lu, X.-Y. Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 56–72 (2014).
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Tumbling cards. Phys. Fluids 11, 1–3 (1999).
Auguste, F., Magnaudet, J. & Fabre, D. Falling styles of disks. J. Fluid Mech. 719, 388–405 (2013).
Li, J. & Liu, Z. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637–1650 (2018).
Sun, Y. et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures 33, 3633–3643 (2021).
Guttag, M., Karimi, H. H., Falcón, C. & Reis, P. M. Aeroelastic deformation of a perforated strip. Phys. Rev. Fluids 3, 014003 (2018).
Pratap, M., Agrawal, A. K. & Kumar, S. Design and selection criteria of main parachute for re entry space payload. Def. Sci. J. 69, 531–537 (2019).