Al-Gailani, S. A. et al. A survey of Free Space Optics (FSO) communication systems, links, and networks. IEEE Access 9, 7353–7373 (2021).
Barchers, J. D., Fried, D. L. & Link, D. J. Evaluation of the performance of Hartmann sensors in strong scintillation. Appl. Opt. 41, 1012–1021 (2002).
Crepp, J. R., Letchev, S. O., Potier, S. J., Follansbee, J. H. & Tusay, N. T. Measuring phase errors in the presence of scintillation. Opt. Express 28, 37721–37733 (2020).
Huang, Z. & Cao, L. Quantitative phase imaging based on holography: trends and new perspectives. Light Sci. Appl. 13, 145 (2024).
Poon, T.-C. Digital Holography and Three-Dimensional Display (Springer, New York, 2006).
Cumming, B. P. & Gu, M. Direct determination of aberration functions in microscopy by an artificial neural network. Opt. Express 28, 14511–14521 (2020).
Yazdani, R. & Fallah, H. Wavefront sensing for a Shack–Hartmann sensor using phase retrieval based on a sequence of intensity patterns. Appl. Opt. 56, 1358–1364 (2017).
Wu, Y., Sharma, M. K. & Veeraraghavan, A. WISH: wavefront imaging sensor with high resolution. Light Sci. Appl. 8, 44 (2019).
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).
Ding, Y., Fan, F., Tian, Z. & Wang, Z. L. Sublimation-induced shape evolution of silver cubes. Small 5, 2812–2815 (2009).
Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).
Solntsev, A. S., Agarwal, G. S. & Kivshar, Y. S. Metasurfaces for quantum photonics. Nat. Photon. 15, 327–336 (2021).
Colburn, S., Zhan, A. & Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 4, eaar2114 (2018).
Ji, A. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. https://doi.org/10.1038/s41467-022-34197-6 (2022).
Yi, S. et al. Angle-based wavefront sensing enabled by the near fields of flat optics. Nat. Commun. 12, 6002 (2021).
Go, G.-H. et al. Meta Shack–Hartmann wavefront sensor with large sampling density and large angular field of view: phase imaging of complex objects. Light Sci. Appl. 13, 187 (2024).
Yang, Z. et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9, 4607 (2018).
Wu, Q. et al. Single-shot quantitative amplitude and phase imaging based on a pair of all-dielectric metasurfaces. Optica 10, 619–625 (2023).
Kwon, H., Arbabi, E., Kamali, S. M., Faraji-Dana, M. & Faraon, A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photon. 14, 109–114 (2020).
Li, L. et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens. Sci. Adv. https://doi.org/10.1126/sciadv.adl0501 (2024).
Engay, E., Huo, D., Malureanu, R., Bunea, A.-I. & Lavrinenko, A. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging. Nano Lett 21, 3820–3826 (2021).
Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020).
Ferrari, J. A., Ayubi, G. A., Flores, J. L. & Perciante, C. D. Transport of intensity equation: validity limits of the usually accepted solution. Opt. Commun. 318, 133–136 (2014).
Yin, X. et al. Evaluation of the communication quality of free-space laser communication based on the power-in-the-bucket method. Appl. Opt. 57, 573–581 (2018).
Zhang, P. et al. High-accuracy wavefront sensing by phase diversity technique with bisymmetric defocuses diversity phase. Sci. Rep. 7, 15361 (2017).
Thurman, S. T. Method of obtaining wavefront slope data from through-focus point spread function measurements. J. Opt. Soc. Am. A 28, 1–7 (2011).
Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 234–241 (Springer, 2015).
Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In European Conference on Computer Vision (ECCV) 2018 89–105 (Springer, 2018).
Wang, K. et al. On the use of deep learning for phase recovery. Light Sci. Appl. 13, 4 (2024).
Shu, X., Li, B. & Ma, Z. Wavefront reconstruction using two-frame random interferometry based on Swin-Unet. Photonics 11, 122 (2024).
Schmidt, J. D. Numerical Simulation of Optical Wave Propagation: With Examples in MATLAB (SPIE, 2010).
Kang, J., Fernandez-Beltran, R., Kang, X., Ni, J. & Plaza, A. Noise-tolerant deep neighborhood embedding for remotely sensed images with label noise. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 2551–2562 (2021).
Ohtsuji, T., Takeuchi, T., Soma, T. & Kitsunezuka, M. Noise-tolerant, deep-learning-based radio identification with logarithmic power spectrum. In IEEE International Conference on Communications (ICC) 2019 1–6 (IEEE, 2019).
Han, H. & Choi, S. Transfer learning from simulation to experimental data: NMR chemical shift predictions. J. Phys. Chem. Lett. 12, 3662–3668 (2021).
Antipa, N. et al. DiffuserCam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).
Chen, N. & Brady, D. Ptychographic wavefront cameras. Opt. Lett. 49, 6653–6656 (2024).
Wang, Q., Yu, S., Zhou, Y., Tan, L. & Ma, J. Influence of atmospheric turbulence on coherent source in a horizontal long-distance laser link. Opt. Laser Technol. 122, 105877 (2020).
Wang, Y., Zhang, Y., Wang, J. & Jia, J. Degree of polarization for quantum light field propagating through non-Kolmogorov turbulence. Opt. Laser Technol. 43, 776–780 (2011).
Dean, B. H. & Bowers, C. W. Diversity selection for phase-diverse phase retrieval. J. Opt. Soc. Am. A 20, 1490–1504 (2003).
Watnik, A. T. & Gardner, D. F. Wavefront sensing in deep turbulence. Opt. Photon. News 29, 38–45 (2018).
Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman and Company, 2017).