Dutta P, Kumari A, Mahanta M, Upamanya Gunadhya K, Heisnam P et al. Nanotechnological approaches for management of soil-borne plant pathogens. 2023;14. https://doi.org/10.3389/fpls.2023.1136233.

Jang Y, Yi H, Maharjan R, Jeong M, Yoon Y. First report of root rot caused by Fusarium armeniacum on soybean in Korea. Plant Dis. 2022;106(4):1306. https://doi.org/10.1094/pdis-11-20-2319-pdn.

Cao Y, Ma J, Han S, Hou M, Wei X, et al. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol J. 2023;21(9):1839–59. https://doi.org/10.1111/pbi.14097.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li Z, Bai X, Jiao S, Li Y, Li P, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. Microbiome. 2021;9(1):217. https://doi.org/10.1186/s40168-021-01169-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zuriegat Q, Zheng Y, Liu H, Wang Z, Yun Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Mol Plant Pathol. 2021;22(7):882–95. https://doi.org/10.1111/mpp.13068.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou X, Wang JT, Wang WH, Tsui CK, Cai L. Changes in bacterial and fungal microbiomes associated with tomatoes of healthy and infected by Fusarium oxysporum f. sp. lycopersici. Micro Ecol. 2021;81(4):1004–17. https://doi.org/10.1007/s00248-020-01535-4.

Preece C, Peñuelas J. A return to the wild: root exudates and food security. Trends Plant Sci. 2020;25(1):14–21. https://doi.org/10.1016/j.tplants.2019.09.010.

Article 
CAS 
PubMed 

Google Scholar
 

Jiang G, Zhang Y, Gan G, Li W, Wan W, et al. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME Commun. 2022;2(1):10. https://doi.org/10.1038/s43705-022-00094-8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Choi K, Choi J, Lee PA, Roy N, Khan R, et al. Alteration of bacterial wilt resistance in Tomato plant by microbiota transplant. Front Plant Sci. 2020;11:1186. https://doi.org/10.3389/fpls.2020.01186.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Peterson RKD, Varella AC, Higley LG. Tolerance: the forgotten child of plant resistance. PeerJ. 2017;5: e3934. https://doi.org/10.7717/peerj.3934.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Maulenbay A, Rsaliyev A. Fungal disease tolerance with a focus on wheat: a Review. 2024;10(7):482.


Google Scholar
 

Dutta P, Kumari A, Mahanta M, Upamanya Gunadhya K, Heisnam P et al. Nanotechnological approaches for management of soil-borne plant pathogens. 2023;Volume 14 – 2023. https://doi.org/10.3389/fpls.2023.1136233.

El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, et al. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol. 2021;16(3):344–53. https://doi.org/10.1038/s41565-020-00812-0.

Article 
CAS 
PubMed 

Google Scholar
 

Du J, Liu B, Zhao T, Xu X, Lin H, et al. Silica nanoparticles protect rice against biotic and abiotic stresses. J Nanobiotechnol. 2022;20(1):197. https://doi.org/10.1186/s12951-022-01420-x.

Article 
CAS 

Google Scholar
 

Zhao L, Lu L, Wang A, Zhang H, Huang M, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem. 2020;68(7):1935–47. https://doi.org/10.1021/acs.jafc.9b06615.

Article 
CAS 
PubMed 

Google Scholar
 

Debona D, Rodrigues FA, Datnoff LE. Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol. 2017;55:85–107. https://doi.org/10.1146/annurev-phyto-080516-035312.

Article 
CAS 
PubMed 

Google Scholar
 

Deng Q, Liu H, Lu Q, Gangurde SS, Du P, et al. Silicon application for the modulation of rhizosphere soil bacterial community structures and metabolite profiles in Peanut under Ralstonia solanacearum inoculation. 2023;24(4):3268.

CAS 

Google Scholar
 

Deng Q, Huang S, Liu H, Lu Q, Du P et al. Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypogaea L.). Sci Total Environ. 2024;915:170112. https://doi.org/10.1016/j.scitotenv.2024.170112.

Article 
CAS 
PubMed 

Google Scholar
 

Gao CH, Zhang M, Wu Y, Huang Q, Cai P. Divergent influence to a pathogen invader by resident bacteria with different social interactions. Microb Ecol. 2019;77(1):76–86. https://doi.org/10.1007/s00248-018-1207-z.

Article 
CAS 
PubMed 

Google Scholar
 

Li M, Wei Z, Wang J, Jousset A, Friman VP, et al. Facilitation promotes invasions in plant-associated microbial communities. Ecol Lett. 2019;22(1):149–58. https://doi.org/10.1111/ele.13177.

Article 
PubMed 

Google Scholar
 

Gu S, Wei Z, Shao Z, Friman VP, Cao K, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5(8):1002–10. https://doi.org/10.1038/s41564-020-0719-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li M, Pommier T, Yin Y, Wang J, Gu S, et al. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J. 2021;16(3):868–75. https://doi.org/10.1038/s41396-021-01126-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jiang T, Ren J, Li D, Luo Y, Huang Y et al. Pseudomonas syringae exacerbates apple replant disease caused by Fusarium. Microbiol Res. 2025;296:128124. https://doi.org/10.1016/j.micres.2025.128124.

Article 
CAS 
PubMed 

Google Scholar
 

Li M, Wang Q, Liu Z, Pan X, Zhang Y. Silicon application and related changes in soil bacterial community dynamics reduced ginseng black spot incidence in Panax ginseng in a short-term study. BMC Microbiol. 2019;19(1):263. https://doi.org/10.1186/s12866-019-1627-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fortunato AA, da Silva WL, Rodrigues F. Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology. 2014;104(6):597–603. https://doi.org/10.1094/phyto-07-13-0203-r.

Article 
CAS 
PubMed 

Google Scholar
 

Tripathi DK, Vishwakarma K, Singh VP, Prakash V, Sharma S, et al. Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. J Hazard Mater. 2021;408: 124820. https://doi.org/10.1016/j.jhazmat.2020.124820.

Article 
CAS 
PubMed 

Google Scholar
 

Ye M, Song Y, Long J, Wang R, Baerson SR et al. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. 2013;110(38):E3631-E3639. https://doi.org/10.1073/pnas.1305848110.

Kurabachew H, Wydra K. Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Prot. 2014;57:1–7. https://doi.org/10.1016/j.cropro.2013.10.021.

Article 
CAS 

Google Scholar
 

Yuan J, Zhao J, Wen T, Zhao M, Li R, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome. 2018;6(1):156. https://doi.org/10.1186/s40168-018-0537-x.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang M, Li Z, Liu L, Bo A, Zhang C et al. Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. Sci Rep. 2020;10(1):12482. https://doi.org/10.1038/s41598-020-69391-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Feng J, Chen Q, Wu X, Jafari SM, McClements DJ. Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environ Sci Pollut Res. 2018;25(22):21742–51. https://doi.org/10.1007/s11356-018-2183-z.

Article 
CAS 

Google Scholar
 

Wang P, Zhang H, Hu X, Xu L, An X et al. Comparing the potential of silicon nanoparticles and conventional silicon for salinity stress alleviation in Soybean (Glycine max L.): Growth and physiological traits and rhizosphere/endophytic bacterial communities. J Agric Food Chem. 2024;72(19):10781–93. https://doi.org/10.1021/acs.jafc.4c00154.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. https://doi.org/10.1038/nmeth.f.303.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. https://doi.org/10.1038/nmeth.2604.

Article 
CAS 
PubMed 

Google Scholar
 

Oppenheimer-Shaanan Y, Jakoby G, Starr ML, Karliner R, Eilon G et al. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress. eLife. 2022;11. https://doi.org/10.7554/eLife.79679.

Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022;16(3):774–87. https://doi.org/10.1038/s41396-021-01125-3.

Article 
CAS 
PubMed 

Google Scholar
 

Bergkessel M, Guthrie C. Chapter Twenty Five – Colony PCR. In: Lorsch J (editor). Methods enzymol: academic Press; 2013. pp. 299–309.

Zhou Y, Yang Z, Liu J, Li X, Wang X, et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nat Commun. 2023;14(1):8126. https://doi.org/10.1038/s41467-023-43926-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McLaughlin S, Zhalnina K, Kosina S, Northen TR, Sasse J. The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun. 2023;14(1):1649. https://doi.org/10.1038/s41467-023-37164-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Mol Plant. 2023;16(5):849–864. https://doi.org/10.1016/j.molp.2023.03.009.

Article 
CAS 
PubMed 

Google Scholar
 

Fu Q, Lai JL, Ji XH, Luo ZX, Wu G, et al. Alterations of the rhizosphere soil microbial community composition and metabolite profiles of Zea mays by polyethylene-particles of different molecular weights. J Hazard Mater. 2022;423(Pt A): 127062. https://doi.org/10.1016/j.jhazmat.2021.127062.

Article 
CAS 
PubMed 

Google Scholar
 

Yu G, Xu C, Zhang D, Ju F, Ni Y. MetOrigin: discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta. 2022;1(1):e10. https://doi.org/10.1002/imt2.10.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21. https://doi.org/10.1038/nbt.2676.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10(3):655–64. https://doi.org/10.1038/ismej.2015.142.

Article 
CAS 
PubMed 

Google Scholar
 

Ning D, Yuan M, Wu L, Zhang Y, Guo X, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun. 2020;11(1):4717. https://doi.org/10.1038/s41467-020-18560-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rosindell J, Hubbell SP, Etienne RS. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol. 2011;26(7):340–348. https://doi.org/10.1016/j.tree.2011.03.024.

Article 
PubMed 

Google Scholar
 

Chen W, Ren K, Isabwe A, Chen H, Liu M, et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome. 2019;7(1):138. https://doi.org/10.1186/s40168-019-0749-8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang M, Gao L, Dong S, Sun Y, Shen Q et al. Role of silicon on plant–pathogen interactions. 2017;8. https://doi.org/10.3389/fpls.2017.00701.

Ahammed GJ, Yang Y. Mechanisms of silicon-induced fungal disease resistance in plants. Plant Physiol Biochem : PPB. 2021;165:200–6. https://doi.org/10.1016/j.plaphy.2021.05.031.

Article 
CAS 
PubMed 

Google Scholar
 

Zhou T, Guo T, Wang Y, Wang A, Zhang M. Carbendazim: ecological risks, toxicities, degradation pathways and potential risks to human health. Chemosphere. 2023;314:137723. https://doi.org/10.1016/j.chemosphere.2022.137723.

Article 
CAS 
PubMed 

Google Scholar
 

Kumari K, Rani N, Hooda V. Unravelling the effects of nano SiO2, nano TiO2 and their nanocomposites on Zea mays L. growth and soil health. Sci Rep. 2024;14(1):13996. https://doi.org/10.1038/s41598-024-61456-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mostofa SM. Introduction. In: Mostofa SM, editor. Islamist militancy in Bangladesh: a pyramid root cause model. Cham: Springer International Publishing; 2021. p. 1–36.

Chapter 

Google Scholar
 

Tian L, Shen J, Sun G, Wang B, Ji R et al. Foliar Application of SiO(2) nanoparticles alters soil metabolite profiles and microbial community composition in the Pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ Sci Technol. 2020;54(20):13137–46. https://doi.org/10.1021/acs.est.0c03767.

Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 2016;10(3):257–78. https://doi.org/10.3109/17435390.2015.1048326.

Article 
CAS 
PubMed 

Google Scholar
 

Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol. 2004;42:243–70. https://doi.org/10.1146/annurev.phyto.42.012604.135455.

Article 
CAS 
PubMed 

Google Scholar
 

Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4232.

Article 
PubMed 

Google Scholar
 

Spragge F, Bakkeren E, Jahn MT, B. N. Araujo E, Pearson CF et al. Microbiome diversity protects against pathogens by nutrient blocking. Science (New York, NY).382(6676):eadj3502. https://doi.org/10.1126/science.adj3502.

Fang S, Liu D, Tian Y, Deng S, Shang X. Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach. PLoS ONE. 2013;8(4): e61461. https://doi.org/10.1371/journal.pone.0061461.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu K, Cai M, Hu C, Sun X, Cheng Q et al. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ Pollut. 2019;254:113051. https://doi.org/10.1016/j.envpol.2019.113051.

Article 
CAS 
PubMed 

Google Scholar
 

Bi Y, Tian SP, Guo YR, Ge YH, Qin GZ. Sodium silicate reduces postharvest decay on hami melons: induced resistance and fungistatic effects. Plant Dis. 2006;90(3):279–83. https://doi.org/10.1094/pd-90-0279.

Article 
CAS 
PubMed 

Google Scholar
 

Zhou X, Shen Y, Fu X, Wu F. Application of sodium silicate enhances cucumber resistance to Fusarium wilt and alters soil microbial communities. Front Plant Sci. 2018;9:624. https://doi.org/10.3389/fpls.2018.00624.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma C, Ci K, Zhu J, Sun Z, Liu Z, et al. Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. The Science of the total environment. 2021;759: 143501. https://doi.org/10.1016/j.scitotenv.2020.143501.

Article 
CAS 
PubMed 

Google Scholar
 

Deng Q, Yu T, Zeng Z, Ashraf U, Shi Q, et al. Silicon application modulates the growth, rhizosphere soil characteristics, and bacterial community structure in sugarcane. Front Plant Sci. 2021;12: 710139. https://doi.org/10.3389/fpls.2021.710139.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lin L, Shao X, Yang Y, Murero AK, Wang L et al. Lysobacter enzymogenes: a fully armed biocontrol warrior1. J Integr Agric. 2024. https://doi.org/10.1016/j.jia.2024.02.021.

Wang B, Xia Q, Lin Y, Wei F, Yang S et al. Root rot induces a core assemblage of bacterial microbiome to prevent disease infection in Sanqi ginseng. Appl Soil Ecol. 2024;198:105371. https://doi.org/10.1016/j.apsoil.2024.105371.

Article 

Google Scholar
 

Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG et al. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, Biofilm Formation, and Root Exudation. Plant Physiol. 2004;134(1):320–31. https://doi.org/10.1104/pp.103.027888.

Solis-Ortiz CS, Gonzalez-Bernal J, Kido-Díaz HA, Peña-Uribe CA, López-Bucio JS, et al. Bacterial cyclodipeptides elicit Arabidopsis thaliana immune responses reducing the pathogenic effects of Pseudomonas aeruginosa PAO1 strains on plant development. J Plant Physiol. 2022;275: 153738. https://doi.org/10.1016/j.jplph.2022.153738.

Article 
CAS 
PubMed 

Google Scholar
 

Starkey M, Rahme LG. Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc. 2009;4(2):117–24. https://doi.org/10.1038/nprot.2008.224.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yuan QS, Gao Y, Wang L, Wang X, Wang L, et al. Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds. Environ Microbiome. 2024;19(1):61. https://doi.org/10.1186/s40793-024-00603-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP. Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS ONE. 2008;3(4): e2073. https://doi.org/10.1371/journal.pone.0002073.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vacheron J, Péchy-Tarr M, Brochet S, Heiman CM, Stojiljkovic M, et al. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J. 2019;13(5):1318–29. https://doi.org/10.1038/s41396-019-0353-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev. 2021;45(6):fuab033. https://doi.org/10.1093/femsre/fuab033.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu X, Matsumoto H, Lv T, Zhan C, Fang H, et al. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease. Nat Microbiol. 2023;8(8):1419–33. https://doi.org/10.1038/s41564-023-01379-x.

Article 
CAS 
PubMed 

Google Scholar
 

Li Q, Liu Z, Jiang Z, Jia M, Hou Z et al. Phenylalanine metabolism-dependent lignification confers rhizobacterium-induced plant resistance. Plant Physiol. 2025;197(2). https://doi.org/10.1093/plphys/kiaf016.

Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7(11):2069–79. https://doi.org/10.1038/ismej.2013.93.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jiang Y, Wang W, Xie Q, Liu N, Liu L et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. 2017;356(6343):1172–1175. https://doi.org/10.1126/science.aam9970.

Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. https://doi.org/10.1186/s12870-016-0771-y.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cha J-Y, Han S, Hong H-J, Cho H, Kim D, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 2016;10(1):119–29. https://doi.org/10.1038/ismej.2015.95.

Article 
CAS 
PubMed 

Google Scholar
 

Morgunov IG, Kamzolova SV, Dedyukhina EG, Chistyakova TI, Lunina JN, et al. Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol. 2017;101(3):921–32. https://doi.org/10.1007/s00253-016-8067-6.

Article 
CAS 
PubMed 

Google Scholar
 

Ahammed GJ, Li X, Liu A, Chen S. Physiological and defense responses of Tea plants to elevated CO2: a review. 2020;11. https://doi.org/10.3389/fpls.2020.00305.

Sun M, Li L, Wang C, Wang L, Lu D, et al. Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco. Mol Plant Pathol. 2022;23(12):1737–50. https://doi.org/10.1111/mpp.13255.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang K, Zhou G, Chen C, Liu X, Wei L et al. Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber (Cucumis sativus L.). Frontiers in plant science. 2024;15:1447860. https://doi.org/10.3389/fpls.2024.1447860.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang Y, Chen G, Zang Y, Bhavani S, Bai B et al. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via transport of sinapyl alcohol for cell wall lignification in wheat. Plant Commun. 2024:101077. https://doi.org/10.1016/j.xplc.2024.101077.

Dos Santos C, Franco OL. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants (Basel, Switzerland). 2023;12(11). https://doi.org/10.3390/plants12112226.

An C, Mou Z. Salicylic acid and its function in plant immunity. J Integr Plant Biol. 2011;53(6):412–28. https://doi.org/10.1111/j.1744-7909.2011.01043.x.

Article 
CAS 
PubMed 

Google Scholar
 

Zeng H, He K, He Q, Xu L, Zhang W, et al. Exogenous indole-3-acetic acid suppresses rice infection of Magnaporthe oryzae by affecting plant resistance and fungal growth. Phytopathology. 2024;114(5):1050–6. https://doi.org/10.1094/phyto-10-23-0365-kc.

Article 
CAS 
PubMed 

Google Scholar
 

Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, et al. The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol. 2010;154(2):833–46. https://doi.org/10.1104/pp.110.161646
.

Bano K, Kumar B, Alyemeni MN, Ahmad P. Exogenously-sourced salicylic acid imparts resilience towards arsenic stress by modulating photosynthesis, antioxidant potential and arsenic sequestration in Brassica napus plants. Antioxidants (Basel, Switzerland). 2022;11(10). https://doi.org/10.3390/antiox11102010
.

Sun S, Yang Z, Song Z, Wang N, Guo N et al. Silicon enhances plant resistance to Fusarium wilt by promoting antioxidant potential and photosynthetic capacity in cucumber (Cucumis sativus L.). Front Plant Sci. 2022;13:1011859. https://doi.org/10.3389/fpls.2022.1011859.

Carneiro-Carvalho A, Pinto T, Ferreira H, Martins L, Pereira C et al. Effect of silicon fertilization on the tolerance of Castanea sativa Mill. seedlings against Cryphonectria parasitica Barr. J Plant Dis Prot. 2020;127(2):197–210. https://doi.org/10.1007/s41348-019-00283-z.