Gezari, S. Tidal disruption events. Annu. Rev. Astron. Astrophys. 59, 21–58 (2021).
Komossa, S. et al. The extremes of AGN variability: outbursts, deep fades, changing looks, exceptional spectral states, and semi-periodicities. Adv. Space Res. https://doi.org/10.1016/j.asr.2025.04.058 (2025).
LaMassa, S. M. et al. The discovery of the first ‘changing look’ quasar: new insights into the physics and phenomenology of active galactic nucleus. Astrophys. J. 800, 144 (2015).
MacLeod, C. L. et al. Changing-look quasar candidates: first results from follow-up spectroscopy of highly optically variable quasars. Astrophys. J. 874, 8 (2019).
Stern, D. et al. A mid-IR selected changing-look quasar and physical scenarios for abrupt AGN fading. Astrophys. J. 864, 27 (2018).
Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g*. Phys. Rev. Lett. 124, 251102 (2020).
Ricci, C. & Trakhtenbrot, B. Changing-look active galactic nuclei. Nat. Astron. 7, 1282–1294 (2023).
Graham, M. J. et al. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 518, 74–76 (2015).
Masterson, M. et al. Evolution of a relativistic outflow and X-ray corona in the extreme changing-look AGN 1ES 1927+654. Astrophys. J. 934, 35 (2022).
Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019).
Middleton, M., Done, C., Ward, M., Gierliński, M. & Schurch, N. RE J1034+396: the origin of the soft X-ray excess and quasi-periodic oscillation. Mon. Not. R. Astron. Soc. 394, 250–260 (2009).
Wiseman, P. et al. A systematically selected sample of luminous, long-duration, ambiguous nuclear transients. Mon. Not. R. Astron. Soc. 537, 2024–2045 (2025).
Hinkle, J. T. et al. The most energetic transients: tidal disruptions of high-mass stars. Sci. Adv. 11, eadt0074 (2025).
McKernan, B. et al. Starfall: a heavy rain of stars in ‘turning on’ AGN. Mon. Not. R. Astron. Soc. 514, 4102–4110 (2022).
Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).
Hodgkin, S. T., Wyrzykowski, L., Blagorodnova, N. & Koposov, S. Transient astronomy with the Gaia satellite. Philos. Trans. R. Soc. Lond. Ser. A 371, 20120239 (2013).
Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).
Tonry, J. et al. ATLAS transient discovery report for 2018-07-01. Transient Name Serv. Discov. Rep. 2018-909, 1 (2018).
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).
Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Graham, M. J. et al. Understanding extreme quasar optical variability with CRTS. I. Major AGN flares. Mon. Not. R. Astron. Soc. 470, 4112–4132 (2017).
Graham, M. J. et al. A light in the dark: searching for electromagnetic counterparts to black hole-black hole mergers in LIGO/Virgo O3 with the Zwicky Transient Facility. Astrophys. J. 942, 99 (2023).
Stern, D. et al. Mid-infrared selection of active galactic nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected active galactic nuclei in COSMOS. Astrophys. J. 753, 30 (2012).
Stein, R. et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 5, 510–518 (2021).
van Velzen, S. et al. Establishing accretion flares from supermassive black holes as a source of high-energy neutrinos. Mon. Not. R. Astron. Soc. 529, 2559–2576 (2024).
Grishin, E., Bobrick, A., Hirai, R., Mandel, I. & Perets, H. B. Supernova explosions in active galactic nuclear discs. Mon. Not. R. Astron. Soc. 507, 156–174 (2021).
Gu, Y., Zhang, X.-G., Chen, X.-Q., Yang, X. & Liang, E.-W. A candidate of high-z central tidal disruption event in quasar SDSS J000118.70+003314.0. Mon. Not. R. Astron. Soc. 537, 84–96 (2025).
Karmen, M. et al. JWST discovery of a high-redshift tidal disruption event candidate in COSMOS-Web. Astrophys. J. 990, 149–167 (2025).
Perna, R., Lazzati, D. & Cantiello, M. Electromagnetic signatures of relativistic explosions in the disks of active galactic nuclei. Astrophys. J. Lett. 906, L7 (2021).
Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002).
Woosley, S. E. & Heger, A. The pair-instability mass gap for black holes. Astrophys. J. Lett. 912, L31 (2021).
Renzo, M. & Smith, N. Pair-instability evolution and explosions in massive stars. Preprint at https://arxiv.org/abs/2407.16113 (2024).
Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).
Chan, C.-H., Piran, T. & Krolik, J. H. High-energy emission from tidal disruption events in active galactic nuclei. Astrophys. J. 914, 107 (2021).
Wang, Y., Lin, D. N. C., Zhang, B. & Zhu, Z. Changing-look active galactic nuclei behavior induced by disk-captured tidal disruption events. Astrophys. J. Lett. 962, L7 (2024).
Ryu, T. et al. In-plane tidal disruption of stars in discs of active galactic nuclei. Mon. Not. R. Astron. Soc. 527, 8103–8117 (2024).
Prasad, C., Wang, Y., Perna, R., Ford, K. E. S. & McKernan, B. Tidal disruption events from three-body scatterings and eccentricity pumping in the discs of active galactic nuclei. Mon. Not. R. Astron. Soc. 531, 1409–1421 (2024).
Subrayan, B. M. et al. Scary Barbie: an extremely energetic, long-duration tidal disruption event candidate without a detected host galaxy at z = 0.995. Astrophys. J. Lett. 948, L19 (2023).
Guillochon, J. et al. MOSFiT: modular open source fitter for transients. Astrophys. J. Suppl. Ser. 236, 6 (2018).
Kumar, H. et al. AT2023vto: an exceptionally luminous helium tidal disruption event from a massive star. Astrophys. J. Lett. 974, L36 (2024).
Readhead, A. C. S. et al. Compact symmetric objects. III. Evolution of the high-luminosity branch and a possible connection with tidal disruption events. Astrophys. J. 961, 242 (2024).
Goodman, J. & Tan, J. C. Supermassive stars in quasar disks. Astrophys. J. 608, 108–118 (2004).
Nayakshin, S., Cuadra, J. & Springel, V. Simulations of star formation in a gaseous disc around Sgr A* – a failed active galactic nucleus. Mon. Not. R. Astron. Soc. 379, 21–33 (2007).
Bartko, H. et al. An extremely top-heavy initial mass function in the Galactic Center stellar disks. Astrophys. J. 708, 834–840 (2010).
Cantiello, M., Jermyn, A. S. & Lin, D. N. C. Stellar evolution in AGN disks. Astrophys. J. 910, 94 (2021).
Jermyn, A. S., Dittmann, A. J., McKernan, B., Ford, K. E. S. & Cantiello, M. Effects of an immortal stellar population in AGN disks. Astrophys. J. 929, 133 (2022).
Chen, Y.-X., Jiang, Y.-F. & Goodman, J. Accretion of active galactic nucleus stars under the influence of disk geometry. Astrophys. J. 987, 188 (2025).
Davies, M. B. & Lin, D. N. C. Making massive stars in the Galactic Centre via accretion on to low-mass stars within an accretion disc. Mon. Not. R. Astron. Soc. 498, 3452–3456 (2020).
Fabj, G., Dittmann, A. J., Cantiello, M., Perna, R. & Samsing, J. Mapping the outcomes of stellar evolution in the disks of active galactic nuclei. Astrophys. J. 981, 16 (2025).
Mummery, A. The maximum mass of a black hole which can tidally disrupt a star: measuring black hole spins with tidal disruption events. Mon. Not. R. Astron. Soc. 527, 6233–6252 (2024).
Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).
Phinney, E. S. Manifestations of a massive black hole in the Galactic Center. Proc. Int. Astron. Union 136, 543–553 (1989).
Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).
Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).
Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).
Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).
Masci, F. J. et al. A new forced photometry service for the Zwicky Transient Facility. Preprint at https://arxiv.org/abs/2305.16279 (2023).
Magnier, E. A. et al. Pan-STARRS photometric and astrometric calibration. Astrophys. J. Suppl. Ser. 251, 6 (2020).
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).
Kelly, B. C., Bechtold, J. & Siemiginowska, A. Are the variations in quasar optical flux driven by thermal fluctuations? Astrophys. J. 698, 895–910 (2009).
Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale Telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).
Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).
Wilson, J. C. et al. Mass producing an efficient NIR spectrograph. In Proc. SPIE Conference Series, Ground-based Instrumentation for Astronomy Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 1295–1305 (SPIE, 2004).
Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362–376 (2004).
Vacca, W. D., Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pac. 115, 389–409 (2003).
Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).
Temple, M. J., Hewett, P. C. & Banerji, M. Modelling type 1 quasar colours in the era of Rubin and Euclid. Mon. Not. R. Astron. Soc. 508, 737–754 (2021).
Rodríguez-Pascual, P. M. et al. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. IX. Ultraviolet observations of Fairall 9. Astrophys. J. Suppl. Ser. 110, 9–20 (1997).
Schmidt, E. O., Baravalle, L. D. & Rodríguez-Kamenetzky, A. R. Spectroscopic study of the [O iii]λ5007 profile in Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 502, 3312–3328 (2021).
Maddox, N. [O ii] as a proxy for star formation in AGN host galaxies: beware of extended emission line regions. Mon. Not. R. Astron. Soc. 480, 5203–5210 (2018).
Veres, P. M. et al. Back from the dead: AT2019aalc as a candidate repeating TDE in an AGN. Preprint at https://arxiv.org/abs/2408.17419 (2024).
Perley, D. A. Fully automated reduction of longslit spectroscopy with the low resolution imaging spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).
Lang, D., Hogg, D. W., Mierle, K., Blanton, M. & Roweis, S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 139, 1782–1800 (2010).
Bradley, L. et al. astropy/photutils: 1.13.0 version 1.13.0. Zenodo https://doi.org/10.5281/zenodo.12585239 (2024).
Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).
Chen, Y. et al. The KBSS-KCWI survey: the connection between extended Ly α haloes and galaxy azimuthal angle at z ~ 2–3. Mon. Not. R. Astron. Soc. 508, 19–43 (2021).
Soto, K. T., Lilly, S. J., Bacon, R., Richard, J. & Conseil, S. ZAP – enhanced PCA sky subtraction for integral field spectroscopy. Mon. Not. R. Astron. Soc. 458, 3210–3220 (2016).
Jacob, J. C. et al. Montage: an astronomical image mosaicking toolkit. Astrophysics Source Code Library ascl:1010.036 (2010).
Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).
Mainzer, A. et al. Initial performance of the NEOWISE reactivation mission. Astrophys. J. 792, 30 (2014).
Pozo Nuñez, F., Gianniotis, N. & Polsterer, K. L. A Gaussian process cross-correlation approach to time-delay estimation in active galactic nuclei. Astron. Astrophys. 674, A83 (2023).
Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014).
Mandal, A. K. et al. Revisiting the dust torus size–luminosity relation based on a uniform reverberation-mapping analysis. Astrophys. J. 968, 59 (2024).
Jiang, N. et al. Infrared echoes of optical tidal disruption events: ~1% dust-covering factor or less at subparsec scale. Astrophys. J. 911, 31 (2021).
Burrows, D. N. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 165–195 (2005).
Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004).
Margutti, R. et al. The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves. Mon. Not. R. Astron. Soc. 428, 729–742 (2013).
HI4PI Collaboration. HI4PI: a full-sky H i survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).
Shimwell, T. W. et al. The LOFAR Two-metre Sky Survey. V. Second data release. Astron. Astrophys. 659, A1 (2022).
Andreoni, I. et al. A very luminous jet from the disruption of a star by a massive black hole. Nature 612, 430–434 (2022).
Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).
Kozłowski, S. Virial black hole mass estimates for 280,000 AGNs from the SDSS broadband photometry and single-epoch spectra. Astrophys. J. Suppl. Ser. 228, 9 (2017).
Cackett, E. M. & Horne, K. Photoionized Hβ emission in NGC 5548: it breathes! Mon. Not. R. Astron. Soc. 365, 1180–1190 (2006).
Wang, S. et al. The Sloan Digital Sky Survey reverberation mapping project: how broad emission line widths change when luminosity changes. Astrophys. J. 903, 51 (2020).
Sheng, Z. et al. Mid-infrared variability of changing-look AGNs. Astrophys. J. Lett. 846, L7 (2017).
MacLeod, C. L. et al. A systematic search for changing-look quasars in SDSS. Mon. Not. R. Astron. Soc. 457, 389–404 (2016).
Ricci, C. et al. The destruction and recreation of the X-ray corona in a changing-look active galactic nucleus. Astrophys. J. Lett. 898, L1 (2020).
Tovar Mendoza, G., Davenport, J. R. A., Agol, E., Jackman, J. A. G. & Hawley, S. L. Llamaradas Estelares: modeling the morphology of white-light flares. Astron. J. 164, 17 (2022).
Gryciuk, M. et al. Flare characteristics from X-ray light curves. Sol. Phys. 292, 77 (2017).