Hinzke, D. & Nowak, U. Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kovalev, A. A. & Tserkovnyak, Y. Thermomagnonic spin transfer and Peltier effects in insulating magnets. Europhys. Lett. 97, 67002 (2012).

Article 
ADS 

Google Scholar
 

Schlickeiser, F., Ritzmann, U., Hinzke, D. & Nowak, U. Role of entropy in domain wall motion in thermal gradients. Phys. Rev. Lett. 113, 097201 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, X. S. & Wang, X. R. Thermodynamic theory for thermal-gradient-driven domain-wall motion. Phys. Rev. B 90, 014414 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Yan, P., Cao, Y. & Sinova, J. Thermodynamic magnon recoil for domain wall motion. Phys. Rev. B 92, 100408 (2015).

Article 
ADS 

Google Scholar
 

Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Inertia-free thermally driven domain-wall motion in antiferromagnets. Phys. Rev. Lett. 117, 107201 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Donges, A. et al. Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents: competition of angular momentum transfer and entropic torque. Phys. Rev. Res. 2, 013293 (2020).

Article 
CAS 

Google Scholar
 

Ashkin, A. & Dziedzic, J. Interaction of laser light with magnetic domains. Appl. Phys. Lett. 21, 253 (1972).

Article 
ADS 
CAS 

Google Scholar
 

Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Tetienne, J.-P., et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366 (2014).

Ramsay, A. J. et al. Optical spin-transfer-torque-driven domain-wall motion in a ferromagnetic semiconductor. Phys. Rev. Lett. 114, 067202 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Quessab, Y. et al. Helicity-dependent all-optical domain wall motion in ferromagnetic thin films. Phys. Rev. B 97, 054419 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Shokr, Y. A. et al. Steering of magnetic domain walls by single ultrashort laser pulses. Phys. Rev. B 99, 214404 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Hedrich, N. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574 (2021).

Article 
CAS 

Google Scholar
 

Mikhaılov, A. V. & Yaremchuk, A. I. Forced motion of a domain wall in the field of a spin wave. Sov. J. Exp. Theor. Phys. Lett. 39, 354 (1984).

ADS 

Google Scholar
 

Han, D.-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

Article 
ADS 

Google Scholar
 

Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104406 (2014).

Article 
ADS 

Google Scholar
 

Wang, W. et al. Magnon-driven domain-wall motion with the Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 114, 087203 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Qaiumzadeh, A., Kristiansen, L. A. & Brataas, A. Controlling chiral domain walls in antiferromagnets using spin-wave helicity. Phys. Rev. B 97, 020402 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Yu, W., Lan, J. & Xiao, J. Polarization-selective spin wave driven domain-wall motion in antiferromagnets. Phys. Rev. B 98, 144422 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Oh, S.-H., Kim, S. K., Xiao, J. & Lee, K.-J. Bidirectional spin-wave-driven domain wall motion in ferrimagnets. Phys. Rev. B 100, 174403 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Rodrigues, D., Salimath, A., Everschor-Sitte, K. & Hals, K. Spin-wave driven bidirectional domain wall motion in kagome antiferromagnets. Phys. Rev. Lett. 127, 157203 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lan, J. & Xiao, J. Spin wave driven domain wall motion in easy-plane ferromagnets: a particle perspective. Phys. Rev. B 106, L020404 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Jiao, X., Wang, X. S. & Lan, J. Universal spin wave driven domain wall velocity in biaxial ferromagnets. Phys. Rev. B 109, 094428 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Woo, S., Delaney, T. & Beach, G. S. D. Magnetic domain wall depinning assisted by spin wave bursts. Nat. Phys. 13, 448 (2017).

Article 
CAS 

Google Scholar
 

Ogawa, N. et al. Photodrive of magnetic bubbles via magnetoelastic waves. Proc. Natl Acad. Sci. USA 112, 8977 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A., and Liu, L., Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121 (2019).

Fan, Y. et al. Coherent magnon-induced domain-wall motion in a magnetic insulator channel. Nat. Nanotechnol. 18, 1000 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213 (2018).

Article 
CAS 

Google Scholar
 

Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 1 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655 (2005).

Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Satoh, T., et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662 (2012).

Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).

Article 
ADS 

Google Scholar
 

Kimel, A. V. et al. Optical excitation of antiferromagnetic resonance in TmFeO3. Phys. Rev. B 74, 060403 (2006).

Article 
ADS 

Google Scholar
 

Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Hortensiuset, J. R., al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001 (2021).

Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 1 (2020).

Article 
ADS 

Google Scholar
 

Zayko, S. et al. Ultrafast high-harmonic nanoscopy of magnetization dynamics. Nat. Commun. 12, 6337 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jangid, R. et al. Extreme domain wall speeds under ultrafast optical excitation. Phys. Rev. Lett. 131, 256702 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Stupakiewicz, A., Maziewski, A., Davidenko, I. & Zablotskii, V. Light-induced magnetic anisotropy in Co-doped garnet films. Phys. Rev. B 64, 064405 (2001).

Article 
ADS 

Google Scholar
 

Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010).

Article 
ADS 

Google Scholar
 

Chou, F. C. et al. Ferromagnetic moment and spin rotation transitions in tetragonal antiferromagnetic Sr2Cu3O4Cl2. Phys. Rev. Lett. 78, 535 (1997).

Article 
ADS 
CAS 

Google Scholar
 

Seyler, K. L. et al. Direct visualization and control of antiferromagnetic domains and spin reorientation in a parent cuprate. Phys. Rev. B 106, L140403 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Fiebig, M., Fröhlich, D., Lottermoser, T. & Maat, M. Probing of ferroelectric surface and bulk domains in RMnO3 (R=Y, R=Ho) by second harmonic generation. Phys. Rev. B 66, 144102 (2002).

Article 
ADS 

Google Scholar
 

Schmitt, C. et al. Identifying the domain-wall spin structure in antiferromagnetic NiO/Pt. Phys. Rev. B 107, 184417 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Wörnle, M. S. et al. Coexistence of Bloch and Néel walls in a collinear antiferromagnet. Phys. Rev. B 103, 094426 (2021).

Article 
ADS 

Google Scholar
 

Parks, B. et al. Magnetization measurements of antiferromagnetic domains in Sr2Cu3O4Cl2. Phys. Rev. B 63, 134433 (2001).

Article 
ADS 

Google Scholar
 

Shan, J.-Y. et al. Dynamic magnetic phase transition induced by parametric magnon pumping. Phys. Rev. B 109, 054302 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Hansteen, F., Kimel, A., Kirilyuk, A. & Rasing, T. Nonthermal ultrafast optical control of the magnetization in garnet films. Phys. Rev. B 73, 014421 (2006).

Article 
ADS 

Google Scholar
 

Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Ultrafast switching of antiferromagnets via spin-transfer torque. Phys. Rev. B 91, 064423 (2015).

Article 
ADS 

Google Scholar
 

Katsumata, K. et al. Direct observation of the quantum energy gap in S = \(\frac{1}{2}\) tetragonal cuprate antiferromagnets. Europhys. Lett. 54, 508 (2001).

Article 
ADS 
CAS 

Google Scholar
 

Migliori, A. et al. Elastic constants and specific-heat measurements on single crystals of La2CuO4. Phys. Rev. B 41, 2098 (1990).

Article 
ADS 
CAS 

Google Scholar
 

Abd-Shukor, R. Ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors: A review. Phase Trans. 91, 48 (2018).

Article 
CAS 

Google Scholar
 

Kim, Y. J. et al. Neutron scattering study of Sr2Cu3O4Cl2. Phys. Rev. B 64, 024435 (2001).

Article 
ADS 

Google Scholar
 

Gomonay, H. V., Korniienko, I. G. & Loktev, V. M. Theory of magnetization in multiferroics: Competition between ferromagnetic and antiferromagnetic domains. Phys. Rev. B 83, 054424 (2011).

Article 
ADS 

Google Scholar
 

Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bar’yakhtar, I. V. and I. B. A. Dynamic solitons in a uniaxial antiferromagnet. Sov. Phys. JETP 58, 190 (1984).

Yuan, H. Y., Wang, W., Yung, M.-H. & Wang, X. R. Classification of magnetic forces acting on an antiferromagnetic domain wall. Phys. Rev. B 97, 214434 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Caretta, L. & Avci, C. O. Domain walls speed up in insulating ferrimagnetic garnets. APL Mater. 12, 011106 (2024).

Article 
CAS 

Google Scholar
 

Cheng, R. et al. Magnetic domain wall skyrmions. Phys. Rev. B 99, 184412 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Noro, S. et al. Magnetic properties of Ba2Cu3O4Cl2 single crystals. Mater. Sci. Eng.: B 25, 167 (1994).

Article 
CAS 

Google Scholar
 

Harter, J. W., Niu, L., Woss, A. J. & Hsieh, D. High-speed measurement of rotational anisotropy nonlinear optical harmonic generation using position-sensitive detection. Opt. Lett. 40, 4671 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kastner, M. A. et al. Field-dependent antiferromagnetism and ferromagnetism of the two copper sublattices in Sr2Cu3O4Cl2. Phys. Rev. B 59, 14702 (1999).

Article 
ADS 
CAS 

Google Scholar
 

Tveten, E. G., Müller, T., Linder, J. & Brataas, A. Intrinsic magnetization of antiferromagnetic textures. Phys. Rev. B 93, 104408 (2016).

Article 
ADS 

Google Scholar
 

Fradkin, E., et al. Field theories of condensed matter physics (Cambridge University Press, 2013).

Kamra, A., Troncoso, R. E., Belzig, W. & Brataas, A. Gilbert damping phenomenology for two-sublattice magnets. Phys. Rev. B 98, 184402 (2018).

Article 
ADS 
CAS 

Google Scholar
Â