Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).
Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).
Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).
Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R Soc. B: Biol. Sci. 280, 20122829 (2013).
Wernberg, T. et al. Marine heatwaves as hot spots of climate change and impacts on biodiversity and ecosystem services. Nat. Rev. Biodivers. 1–19 (2025).
Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. & Largier, J. L. Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves. Sci. Rep. 9, 4216 (2019).
Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).
Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).
Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).
Smith, K. E. et al. Baseline matters: Challenges and implications of different marine heatwave baselines. Prog. Oceanogr. 231, 103404 (2025).
Smith, K. E. et al. Ocean extremes as a stress test for marine ecosystems and society. Nat. Climate Change 15, 1–5 (2025).
Wernberg, T. et al. Impacts of climate change on marine foundation species. Ann. Rev. Mar. Sci. 16, 247–282 (2024).
Ellison, A. Foundation species, non-trophic interactions, and the value of being common. Science 13, 254–268 (2019).
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Cheng, L. et al. Past and future ocean warming. Nat Rev Earth Environ 3, 776–794 (2022).
Smith, K. E. et al. Global impacts of marine heatwaves on coastal foundation species. Nat. Commun. 15, 5052 (2024).
Bateman, B. L., VanDerWal, J. & Johnson, C. N. Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35, 306–314 (2012).
Klaassen, M., Marques, T. A., Alves, F. & Fernandez, M. Trends in marine species distribution models: a review of methodological advances and future challenges. Ecography, e07702 (2025).
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).
Franco, J. N. et al. The ‘golden kelp’Laminaria ochroleuca under global change: Integrating multiple eco-physiological responses with species distribution models. J. Ecol. 106, 47–58 (2018).
Marbà, N., Jordà, G., Bennett, S. & Duarte, C. M. Seagrass thermal limits and vulnerability to future warming. Front. Mar. Sci. 9, 860826 (2022).
Christie, H., Jørgensen, N. M., Norderhaug, K. M. & Waage-Nielsen, E. Species distribution and habitat exploitation of fauna associated with kelp (Laminaria hyperborea) along the Norwegian coast. J. Mar. Biol. Assoc. U.K. 83, 687–699 (2003).
Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).
Unsworth, R. & Cullen-Unsworth, L. C. Biodiversity, ecosystem services, and the conservation of seagrass meadows. Coast. Conserv 19, 95 (2014).
Wernberg, T., Kendrick, G. A. & Toohey, B. D. Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquat. Ecol. 39, 419–430 (2005).
Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52, 1216–1226 (2015).
Smale, D. A., King, N. G., Jackson-Bué, M. & Moore, P. J. Quantifying use of kelp forest habitat by commercially important crustaceans in the United Kingdom. J. Mar. Biol. Assoc. U.K. 102, 627–634 (2022).
Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).
Pessarrodona, A., Moore, P. J., Sayer, M. D. & Smale, D. A. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate. Glob. Change Biol. 24, 4386–4398 (2018).
Smale, D. A. & King, N. G. Vol. 244 1675–1677 (Wiley Online Library, 2024).
Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).
Smith, K. E. et al. Biological impacts of marine heatwaves. Ann. Rev. Mar. Sci. 15, 119–145 (2023).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, eabj3593 (2021).
Beas-Luna, R. et al. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. Glob. Change Biol. 26, 6457–6473 (2020).
Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26, 3525–3538 (2020).
Hensel, M. J. et al. Rise of Ruppia in Chesapeake Bay: Climate change–driven turnover of foundation species creates new threats and management opportunities. Proc. Natl. Acad. Sci. 120, e2220678120 (2023).
Harley, C. D. et al. Effects of climate change on global seaweed communities. J. Phycol. 48, 1064–1078 (2012).
Bennett, S. et al. Thermal performance of seaweeds and seagrasses across a regional climate gradient. Front. Mar. Sci. 9, 733315 (2022).
Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160135 (2017).
Maxwell, S. L. et al. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 25, 613–625 (2019).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).
Webb, T. J., Lines, A. & Howarth, L. M. Occupancy-derived thermal affinities reflect known physiological thermal limits of marine species. Ecol. Evol. 10, 7050–7061 (2020).
Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 1090–1106 (2020).
Sorte, C. J., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 400, 209–217 (2011).
Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: Using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).
Chatzimentor, A., Doxa, A., Katsanevakis, S. & Mazaris, A. D. Are Mediterranean marine threatened species at high risk by climate change?. Glob. Change Biol. 29, 1809–1821 (2023).
Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Glob. Ecol. Biogeogr. 31, 1422–1439 (2022).
McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).
Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).
Bolton, J. J. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64, 263–279 (2010).
Larkum, A. W., Waycott, M. & Conran, J. G. Evolution and biogeography of seagrasses. 3–29 (2018).
Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).
Fragkopoulou, E. et al. Global biodiversity patterns of marine forests of brown macroalgae. Glob. Ecol. Biogeogr. 31, 636–648 (2022).
Thomsen, M. S., Stæhr, P. A. & South, P. M. Fabulous but forgotten fucoid forests. Ecol. Evol. 14, e70491 (2024).
Nguyen, K. D. T. et al. Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS ONE 6, e29340 (2011).
Madeira, D., Narciso, L., Cabral, H. N. & Vinagre, C. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 70, 32–41 (2012).
Smith, K. E., Moore, P. J., King, N. G. & Smale, D. A. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnol. Oceanogr. 67, 314–328 (2022).
Harris, O., King, N. G., Foggo, A. & Smale, D. A. Intraspecific facilitation in an intertidal foundation species plays fundamental role in promoting resistance to extreme climatic events. Oikos, e11079 (2025).
Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490 (2014).
Graiff, A., Liesner, D., Karsten, U. & Bartsch, I. Temperature tolerance of western Baltic Sea Fucus vesiculosus–growth, photosynthesis and survival. J. Exp. Mar. Biol. Ecol. 471, 8–16 (2015).
Eggert, A. & Wiencke, C. Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol. 23, 609–618 (2000).
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).
Davison, I. R. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27, 2–8 (1991).
Bulthuis, D. A. Effects of temperature on photosynthesis and growth of seagrasses. Aquat. Bot. 27, 27–40 (1987).
Saha, M. et al. Response of foundation macrophytes to near-natural simulated marine heatwaves. Glob. Change Biol. 26, 417–430 (2020).
Eggert, A. Seaweed responses to temperature. Seaweed biology: Novel insights into ecophysiology, ecology and utilization, 47–66 (2012).
Harada, A. E. & Burton, R. S. Ecologically relevant temperature ramping rates enhance the protective heat shock response in an intertidal ectotherm. Physiol. Biochem. Zool. 92, 152–162 (2019).
Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
Leathers, T., King, N. G., Foggo, A. & Smale, D. A. Marine heatwave duration and intensity interact to reduce physiological tipping points of kelp species with contrasting thermal affinities. Ann. Bot. 133, 51–60 (2024).
Moyano, M. et al. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS ONE 12, e0179928 (2017).
Madeira, C., Mendonça, V., Flores, A. A., Diniz, M. S. & Vinagre, C. High thermal tolerance does not protect from chronic warming–A multiple end-point approach using a tropical gastropod. Stramonita haemastoma. Ecological Indicators 91, 626–635 (2018).
Smith, K. E., Thatje, S. & Hauton, C. Thermal tolerance during early ontogeny in the common whelk Buccinum undatum (Linnaeus 1785): bioenergetics, nurse egg partitioning and developmental success. J. Sea Res. 79, 32–39 (2013).
Veenhof, R. J. et al. In Oceanography and marine biology (CRC Press, Boca Raton, 2022).
Veenhof, R. et al. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. Ann. Bot. 133, 153–168 (2024).
Becheler, R. et al. Variation in thermal tolerance of the giant kelp’s gametophytes: suitability of habitat, population quality or local adaptation?. Front. Mar. Sci. 9, 802535 (2022).
Truebano, M., Fenner, P., Tills, O., Rundle, S. D. & Rezende, E. L. Thermal strategies vary with life history stage. J. Experim. Biol. 221, jeb171629 (2018).
Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecol. Evolut. 1, 1846–1852 (2017).
King, N. G., McKeown, N. J., Smale, D. A. & Moore, P. J. The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes. Ecography 41, 1469–1484 (2018).
King, N. G. et al. Evidence for different thermal ecotypes in range centre and trailing edge kelp populations. J. Exp. Mar. Biol. Ecol. 514, 10–17 (2019).
Liesner, D. et al. Heat stress responses and population genetics of the kelp Laminaria digitata (Phaeophyceae) across latitudes reveal differentiation among North Atlantic populations. Ecol. Evol. 10, 9144–9177 (2020).
Ladah, L. B. & Zertuche-González, J. A. Local adaptation of juvenile giant kelp, Macrocystis pyrifera, from their southern limit in the northern hemisphere explored using reciprocal transplantation. Eur. J. Phycol. 57, 357–366 (2022).
Strasser, F.-E. et al. Population level variation in reproductive development and output in the golden kelp Laminaria ochroleuca under marine heat wave scenarios. Front. Mar. Sci. 9, 943511 (2022).
Desforges, J. E. et al. The ecological relevance of critical thermal maxima methodology for fishes. J. Fish Biol. 102, 1000–1016 (2023).
Bartsch, I., Vogt, J., Pehlke, C. & Hanelt, D. Prevailing sea surface temperatures inhibit summer reproduction of the kelp L aminaria digitata at H elgoland (N orth S ea). J. Phycol. 49, 1061–1073 (2013).
Qin, L.-Z. et al. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Ind. 119, 106821 (2020).
Bass, A. V., Smith, K. E. & Smale, D. A. Marine heatwaves and decreased light availability interact to erode the ecophysiological performance of habitat-forming kelp species. J. Phycol. 59, 481–495 (2023).
Collier, C. J., Uthicke, S. & Waycott, M. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnol. Oceanogr. 56, 2200–2210 (2011).
Fernández, P. A. et al. Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress. Sci. Rep. 10, 3186 (2020).
Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant Sci. 11, 494 (2020).
Gauci, C., Jueterbock, A., Khatei, A., Hoarau, G. & Bartsch, I. Thermal priming of Saccharina latissima: a promising strategy to improve seaweed production and restoration in future climates. Mar. Ecol. Prog. Ser. 745, 59–71 (2024).
King, N. G., Leathers, T., Smith, K. E. & Smale, D. A. The influence of pre-exposure to marine heatwaves on the critical thermal maxima (CTmax) of marine foundation species. Funct. Ecol. 39(8), 1869–1878 (2024).
Hereward, H. F., King, N. G. & Smale, D. A. Intra-annual variability in responses of a canopy forming kelp to cumulative low tide heat stress: Implications for populations at the trailing range edge. J. Phycol. 56, 146–158 (2020).
Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B: Biol. Sci. 281, 20140846 (2014).
Kordas, R. L., Harley, C. D. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Biol. Ecol. 400, 218–226 (2011).