Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).

Article 
CAS 

Google Scholar
 

Commins, P., Al-Handawi, M. B., Karothu, D. P., Raj, G. & Naumov, P. Efficiently self-healing boronic ester crystals. Chem. Sci. 11, 2606–2613 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mondal, S. et al. Autonomous self-healing organic crystals for nonlinear optics. Nat. Commun. 13, 6589 (2023).

Article 

Google Scholar
 

Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

Article 

Google Scholar
 

Bhunia, S. et al. Autonomous self-repair in piezoelectric molecular crystals. Science 373, 321–327 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Ekeocha, J. et al. Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 33, 2008052 (2021).

Article 
CAS 

Google Scholar
 

Liu, H., Ye, K., Zhang, Z. & Zhang, H. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew. Chem. Int. Ed. 58, 19081–19086 (2019).

Article 
CAS 

Google Scholar
 

Di, Q. et al. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13, 5280 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, H., Ma, X., Wu, S. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).

Article 
CAS 

Google Scholar
 

Wei, Z. et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).

Article 
CAS 

Google Scholar
 

Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

Article 
CAS 

Google Scholar
 

Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

Article 

Google Scholar
 

Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Ed. 55, 13028–13032 (2016).

Article 
CAS 

Google Scholar
 

Kathan, M. et al. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).

Article 
CAS 

Google Scholar
 

Cacciapaglia, R., Stefano, S. D. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Al-Handawi, M. B. et al. Ferroelastic ionic organic crystals that self-heal to 95%. Nat. Commun. 15, 8095 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meng, J., Su, Y., Zhu, H. & Cai, T. Shape memory and self-healing in a molecular crystal with inverse temperature symmetry breaking. Chem. Sci. 15, 5738–5745 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pathan, J. R. et al. A self-healing crystal that repairs multiple cracks. J. Am. Chem. Soc. 146, 27100–27108 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew. Chem. Int. Ed. 57, 8498–8502 (2018).

Article 
CAS 

Google Scholar
 

Liu, G. et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed. 56, 198–202 (2017).

Article 
CAS 

Google Scholar
 

Karothu, D. P., Weston, J., Desta, I. T. & Naumov, P. Shape-memory and self-healing effects in mechanosalient molecular crystals. J. Am. Chem. Soc. 13, 13298–13306 (2016).

Article 

Google Scholar
 

Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

Article 
CAS 

Google Scholar
 

Yamazaki, T., Driessche, A. E. S. V. & Kimura, Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. Soft Matter 16, 1955–1960 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Sierra-Romero, A., Novakovic, K. & Geoghegan, M. A reversible water-based electrostatic adhesive. Angew. Chem. Int. Ed. 63, e202310750 (2024).

Article 
CAS 

Google Scholar
 

Yamaguchi, M., Ono, S. & Terano, M. Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396–1399 (2007).

Article 
CAS 

Google Scholar
 

Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, L., Bailey, J. B., Subramanian, R. H., Groisman, A. & Tezcan, F. A. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Li, Y. M., Zhang, Z. P., Rong, M. Z. & Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 35, 2211009 (2023).

Article 
CAS 

Google Scholar
 

Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

Article 
CAS 

Google Scholar
 

Commins, P., Al-Handawi, M. B. & Naumov, P. Self-healing crystals. Nat. Rev. Chem. 9, 343–355 (2025).

Article 
PubMed 

Google Scholar
 

Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

Article 

Google Scholar
 

Xu, J., Chen, J., Zhang, Y., Liu, T. & Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 60, 7947 (2021).

Article 
CAS 

Google Scholar
 

Hu, J., Mo, R., Jiang, X., Sheng, X. & Zhang, X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183, 121912 (2019).

Article 
CAS 

Google Scholar
 

Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, C. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 34, 2105416 (2022).

Article 
CAS 

Google Scholar
 

Park, S. K. & Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 49, 8287–8314 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Awad, W. M. et al. Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52, 3098–3169 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Mahmoud Halabi, J., Al-Handawi, M. B., Ceballos, R. & Naumov, P. Intersectional effects of crystal features on the actuation performance of dynamic molecular crystals. J. Am. Chem. Soc. 145, 12173–12180 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Duan, Y., Semin, S., Tinnemans, P., Xu, J. & Rasing, T. Fully controllable structural phase transition in thermomechanical molecular crystals with a very small thermal hysteresis. Small 17, 2006757 (2021).

Article 
CAS 

Google Scholar
 

Commins, P. et al. Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface. Nat. Chem. 15, 677–684 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Yang, X. et al. Logarithmic and Archimedean organic crystalline spirals. Nat. Commun. 15, 9025 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lan, L., Li, L., Wang, C., Naumov, P. & Zhang, H. Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146, 30529–30538 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ahmed, E., Karothu, D. P. & Naumov, P. Crystal adaptronics: mechanically reconfigurable elastic and superelastic molecular crystals. Angew. Chem. Int. Ed. 57, 8837–8846 (2018).

Article 
CAS 

Google Scholar
 

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement, and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

Article 
CAS 

Google Scholar
 

Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Macrae, C. F. et al. Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).

Article 
CAS 

Google Scholar
 

Lu, T. dimerscan (Beijing Kein Research Center for Natural Sciences, 2019); http://sobereva.com/soft/dimerscan

Lu, T. Molclus v.1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html

Lu, T. & Chen, Q. Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory. J. Phys. Chem. A 127, 7023–7035 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, Inc., 2016)

Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580−592 (2012).

Article 

Google Scholar
 

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

Article 
CAS 
PubMed 

Google Scholar
Â