Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

ADS 
CAS 

Google Scholar
 

Biggin, A. J. et al. Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): evidence for a stable and potentially reversing geomagnetic field at ca. 3.5Ga. Earth Planet. Sci. Lett. 302, 314–328 (2011).

ADS 
CAS 

Google Scholar
 

Nimmo, F. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) 27–55 (Elsevier, 2015).

Glatzmaier, G. A. & Roberts, P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995).

ADS 
CAS 

Google Scholar
 

Kuang, W. & Bloxham, J. An Earth-like numerical dynamo model. Nature 389, 371–374 (1997).

ADS 
CAS 

Google Scholar
 

Christensen, U. R., Aubert, J. & Hulot, G. Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett. 296, 487–496 (2010).

ADS 
CAS 

Google Scholar
 

Aubert, J., Finlay, C. C. & Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219–223 (2013).

ADS 
CAS 

Google Scholar
 

Yadav, R. K., Gastine, T., Christensen, U. R., Wolk, S. J. & Poppenhaeger, K. Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. 113, 12065–12070 (2016).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).

ADS 
CAS 

Google Scholar
 

Sheyko, A., Finlay, C., Favre, J. & Jackson, A. Scale separated low viscosity dynamos and dissipation within the Earth’s core. Sci. Rep. 8, 12566 (2018).

ADS 

Google Scholar
 

Aubert, J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core. Geophys. J. Int. 235, 468–487 (2023).

ADS 

Google Scholar
 

Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth Planet. Inter. 247, 36–55 (2015).

ADS 

Google Scholar
 

Davies, C. J. Cooling history of Earth’s core with high thermal conductivity. Phys. Earth Planet. Inter. 247, 65–79 (2015).

ADS 
CAS 

Google Scholar
 

Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

ADS 
CAS 

Google Scholar
 

Bono, R. K., Tarduno, J. A., Nimmo, F. & Cottrell, R. D. Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity. Nat. Geosci. 12, 143–147 (2019).

ADS 
CAS 

Google Scholar
 

Bloxham, J. Sensitivity of the geomagnetic axial dipole to thermal core–mantle interactions. Nature 405, 63–65 (2000).

ADS 
CAS 

Google Scholar
 

Landeau, M., Aubert, J. & Olson, P. The signature of inner-core nucleation on the geodynamo. Earth Planet. Sci. Lett. 465, 193–204 (2017).

ADS 
CAS 

Google Scholar
 

Mound, J. E. & Davies, C. J. Longitudinal structure of Earth’s magnetic field controlled by lower mantle heat flow. Nat. Geosci. 16, 380–385 (2023).

ADS 
CAS 

Google Scholar
 

Sakuraba, A. & Kono, M. Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121 (1999).

ADS 

Google Scholar
 

Zhan, X., Zhang, K. & Zhu, R. A full-sphere convection-driven dynamo: implications for the ancient geomagnetic field. Phys. Earth Planet. Inter. 187, 328–335 (2011).

ADS 

Google Scholar
 

Wicht, J. & Sanchez, S. Advances in geodynamo modelling. Geophys. Astrophys. Fluid Dyn. 113, 2–50 (2019).

ADS 
MathSciNet 

Google Scholar
 

Roberts, P. H. & King, E. M. On the genesis of the Earth’s magnetism. Rep. Prog. Phys. 76, 096801 (2013).

ADS 

Google Scholar
 

Kageyama, A. & Sato, T. Computer simulation of a magnetohydrodynamic dynamo. II. Phys. Plasmas 2, 1421–1431 (1995).

ADS 
CAS 

Google Scholar
 

Christensen, U., Olson, P. & Glatzmaier, G. A. A dynamo model interpretation of geomagnetic field structures. Geophys. Res. Lett. 25, 1565–1568 (1998).

ADS 

Google Scholar
 

Kida, S., Araki, K. & Kitauchi, H. Periodic reversals of magnetic field generated by thermal convection in a rotating spherical shell. J. Phys. Soc. Jpn. 66, 2194–2201 (1997).

ADS 
CAS 

Google Scholar
 

King, E. M. & Buffett, B. A. Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett. 371-372, 156–162 (2013).

ADS 
CAS 

Google Scholar
 

Sakuraba, A. & Roberts, P. H. Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci. 2, 802–805 (2009).

ADS 
CAS 

Google Scholar
 

Sheyko, A., Finlay, C. C. & Jackson, A. Magnetic reversals from planetary dynamo waves. Nature 539, 551–554 (2016).

ADS 
CAS 

Google Scholar
 

Aubert, J., Gastine, T. & Fournier, A. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558–593 (2017).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Aubert, J. & Finlay, C. C. Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth’s core surface. Nat. Geosci. 12, 393–398 (2019).

ADS 
CAS 

Google Scholar
 

Aubert, J., Livermore, P. W., Finlay, C. C., Fournier, A. & Gillet, N. A taxonomy of simulated geomagnetic jerks. Geophys. J. Int. 231, 650–672 (2022).

ADS 
CAS 

Google Scholar
 

Aubert, J. Approaching Earth’s core conditions in high-resolution geodynamo simulations. Geophys. J. Int. 219, S137–S151 (2019).

ADS 

Google Scholar
 

Schwaiger, T., Gastine, T. & Aubert, J. Relating force balances and flow length scales in geodynamo simulations. Geophys. J. Int. 224, 1890–1904 (2021).

ADS 
CAS 

Google Scholar
 

Dormy, E. Strong-field spherical dynamos. J. Fluid Mech. 789, 500–513 (2016).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Kent, D. V. & Smethurst, M. A. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett. 160, 391–402 (1998).

ADS 
CAS 

Google Scholar
 

Veikkolainen, T., Evans, D. A., Korhonen, K. & Pesonen, L. J. On the low-inclination bias of the Precambrian geomagnetic field. Precambrian Res. 244, 23–32 (2014).

ADS 
CAS 

Google Scholar
 

Biggin, A. J. et al. Quantitative estimates of average geomagnetic axial dipole dominance in deep geological time. Nat. Commun. 11, 6100 (2020).

ADS 
CAS 

Google Scholar
 

Jackson, A., Jonkers, A. R. T. & Walker, M. R. Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 358, 957–990 (2000).

ADS 
CAS 

Google Scholar
 

Finlay, C. C. et al. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space 72, 156 (2020).

ADS 

Google Scholar
 

Roberts, P. H. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) 57–90 (Elsevier, 2015).

Marti, P. & Jackson, A. A fully spectral methodology for magnetohydrodynamic calculations in a whole sphere. J. Comput. Phys. 305, 403–422 (2016).

ADS 
MathSciNet 

Google Scholar
 

de Koker, N., Steinle-Neumann, G. & Vlček, V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc. Natl Acad. Sci. 109, 4070–4073 (2012).

ADS 

Google Scholar
 

Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485, 355–358 (2012).

ADS 
CAS 

Google Scholar
 

Greenspan, H. P. The Theory of Rotating Fluids (Cambridge Univ. Press, 1968).

Schwaiger, T., Gastine, T. & Aubert, J. Force balance in numerical geodynamo simulations: a systematic study. Geophys. J. Int. 219, S101–S114 (2019).

ADS 

Google Scholar
 

Calkins, M. A., Orvedahl, R. J. & Featherstone, N. A. Large-scale balances and asymptotic scaling behaviour in spherical dynamos. Geophys. J. Int. 227, 1228–1245 (2021).

ADS 

Google Scholar
 

Taylor, J. B. The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem. Proc. R. Soc. Lond. A Math. Phys. Sci. 274, 274–283 (1963).

ADS 

Google Scholar
 

Bono, R. K. et al. The PINT database: a definitive compilation of absolute palaeomagnetic intensity determinations since 4 billion years ago. Geophys. J. Int. 229, 522–545 (2022).

ADS 

Google Scholar
 

Constable, C., Korte, M. & Panovska, S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett. 453, 78–86 (2016).

ADS 
CAS 

Google Scholar
 

Jackson, A. Intense equatorial flux spots on the surface of the Earth’s core. Nature 424, 760–763 (2003).

ADS 
CAS 

Google Scholar
 

Marti, P. et al. Full sphere hydrodynamic and dynamo benchmarks. Geophys. J. Int. 197, 119–134 (2014).

ADS 

Google Scholar
 

Livermore, P. W., Jones, C. A. & Worland, S. J. Spectral radial basis functions for full sphere computations. J. Comput. Phys. 227, 1209–1224 (2007).

ADS 
MathSciNet 

Google Scholar
 

Lin, Y. & Jackson, A. Large-scale vortices and zonal flows in spherical rotating convection. J. Fluid Mech. 912, A46 (2021).

ADS 
MathSciNet 
CAS 

Google Scholar
 

Wicht, J. & Christensen, U. R. Torsional oscillations in dynamo simulations. Geophys. J. Int. 181, 1367–1380 (2010).

ADS 

Google Scholar
 

Varga, P., Denis, C. & Varga, T. Tidal friction and its consequences in palaeogeodesy, in the gravity field variations and in tectonics. J. Geodyn. 25, 61–84 (1998).


Google Scholar
 

Backus, G., Parker, R. & Constable, C. Foundations of Geomagnetism (Cambridge Univ. Press, 1996).