Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, 2010).

Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation Vol. 116 (Springer, 2000).

Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 820 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, X. et al. Harnessing exceptional points for ultrahigh sensitive acoustic wave sensing. Microsyst. Nanoeng. 11, 44 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 11, 9216–9238 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Res. 9, 1182–1190 (2021).

Article 
CAS 

Google Scholar
 

Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qin, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 21, 3165–3173 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

Article 
CAS 

Google Scholar
 

Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Schütz, M. J. in Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment 143–196 (Springer, 2017).

Zhou, Y. et al. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements. Nat. Commun. 15, 6796 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon fock states in a multimode cavity with a double-slit qubit. Phys. Rev. 9, 021056 (2019).

Article 
CAS 

Google Scholar
 

Qiao, H. et al. Acoustic phonon phase gates with number-resolving phonon detection. Nat. Phys.21, 1801–1805 (2025).

Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Agostini, M. & Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 32, 312001 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. X 14, 021002 (2024).

CAS 

Google Scholar
 

Freedman, J. M. et al. Gigahertz-frequency, acousto-optic phase modulation of visible light in a CMOS-fabricated photonic circuit. Preprint at https://doi.org/10.48550/arXiv.2502.08012 (2025).

Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lin Q. et al. Optical multi-beam steering and communication using integrated acousto-optics arrays. Nat. Commun. 16, 4501 (2025).

Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

Article 
ADS 

Google Scholar
 

Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Tucker, E. Amplification of 9.3-kmc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547 (1961).

Article 
ADS 

Google Scholar
 

Fokker, P. A., Dijkhuis, J. I. & De Wijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925 (1997).

Article 
ADS 
CAS 

Google Scholar
 

Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

Article 
CAS 

Google Scholar
 

Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chafatinos, D. L. et al. Polariton-driven phonon laser. Nat. Commun. 11, 4552 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Papuccio-Fernández, I. et al. Polariton cascade phonon laser. Preprint at https://doi.org/10.48550/arXiv.2505.17336 (2025).

Ohtani, K. et al. An electrically pumped phonon-polariton laser. Sci. Adv. 5, eaau1632 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Okada, J. & Matino, H. Continuous oscillations of acoustoelectric current in CdS. Jpn. J. Appl. Phys. 3, 698 (1964).

Article 
ADS 
CAS 

Google Scholar
 

Maines, J. D. & Paige, E. G. S. Current-spiking and self-locking of modes of the acousto-electric oscillator. Solid State Commun. 8, 421–425 (1970).

Article 
ADS 
CAS 

Google Scholar
 

Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci. Rep. 4, 5617 (2014).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mansoorzare, H. & Abdolvand, R. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities. In Proc. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1–3 (IEEE, 2019).

Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023).


Google Scholar
 

Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kino, G. S. & Reeder, T. M. A normal mode theory for the Rayleigh wave amplifier. IEEE Trans. Electron Devices 18, 909–920 (1971).

Article 
ADS 

Google Scholar
 

Pippard, A. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).

Article 
ADS 

Google Scholar
 

Coldren, L. A. Monolithic Acoustic Surface Wave Amplifiers. PhD thesis, Stanford Univ. (1972).

Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited acoustoelectric amplification in a piezoelectric-2DEG heterostructure. Preprint at http://arxiv.org/html/2510.09248v2 (2025).

Danicki, E. Reversing multistrip coupler. Ultrasonics 31, 421–424 (1993).

Article 

Google Scholar
 

Keysight Technologies. Measuring phase noise with a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscilloscope-584447063.html (2025).

Rhea, R. W. Oscillator Design & Computer Simulation (Prentice Hall, 1990).