Ashcroft, N. W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

Article 
CAS 

Google Scholar
 

Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Ashcroft, N. W. Bridgman’s high-pressure atomic destructibility and its growing legacy of ordered states. J. Phys. Condens. Matter 16, S945 (2004).

Article 
CAS 

Google Scholar
 

Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Cond. Matter 34, 183002 (2022).

Article 

Google Scholar
 

Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Somayazulu, M. et al. Evidence for Superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett. 37, 107401 (2020).

Article 
CAS 

Google Scholar
 

Sun, D. et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun. 12, 6863 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, W. et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 127, 117001 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Cao, Z.-Y. et al. Probing superconducting gap in CeH9 under pressure. arXiv preprint arXiv: https://doi.org/10.48550/arXiv.2401.12682 (2024).

Semenok, D. et al. Evidence for pseudogap phase in cerium superhydrides: CeH10 and CeH9. arXiv preprint arXiv: https://arxiv.org/abs/2307.11742 (2023).

Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

Article 
PubMed 

Google Scholar
 

Sun, W., Kuang, X., Keen, H. D. J., Lu, C. & Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524 (2020).

Article 
CAS 

Google Scholar
 

Guo, J., Chen, S., Chen, W., Huang, X. & Cui, T. Advances in the synthesis and superconductivity of lanthanide polyhydrides under high pressure. Front. Electron. Mater. 2, 906213 (2022).

Article 

Google Scholar
 

Zhong, X. et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides. J. Am. Chem. Soc. 144, 13394–13400 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, eaax6849 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhou, D. et al. High-pressure synthesis of magnetic neodymium polyhydrides. J. Am. Chem. Soc. 142, 2803–2811 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shao, M. et al. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem. 60, 15330–15335 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).

Article 
CAS 

Google Scholar
 

Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. 114, 6990–6995 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, L. et al. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B 99, 140501 (2019).

Article 
CAS 

Google Scholar
 

Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).

Article 

Google Scholar
 

Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

Article 

Google Scholar
 

Anisimov, V. I. et al. Full orbital calculation scheme for materials with strongly correlated electrons. Phys. Rev. B 71, 125119 (2005).

Article 

Google Scholar
 

Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

Article 
CAS 

Google Scholar
 

Lechermann, F. et al. Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125120 (2006).

Article 

Google Scholar
 

Pourovskii, L. V., Amadon, B., Biermann, S. & Georges, A. Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications. Phys. Rev. B 76, 235101 (2007).

Article 

Google Scholar
 

Amadon, B. et al. Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B 77, 205112 (2008).

Article 

Google Scholar
 

Korotin, D. et al. Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials. Eur. Phys. J. B 65, 91–98 (2008).

Article 
CAS 

Google Scholar
 

Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).

Article 

Google Scholar
 

Haule, K. & Birol, T. Free energy from stationary implementation of the DFT + DMFT functional. Phys. Rev. Lett. 115, 256402 (2015).

Article 
PubMed 

Google Scholar
 

Plekhanov, E. et al. Many-body renormalization of forces in f-electron materials. Phys. Rev. B 98, 075129 (2018).

Article 
CAS 

Google Scholar
 

Koskenmaki, D. C. & Gschneidner Jr, K. A. Cerium. Handb. Phys. Chem. Rare Earths 1, 337–377 (1978).

Article 
CAS 

Google Scholar
 

Held, K., McMahan, A. K. & Scalettar, R. T. Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. Phys. Rev. Lett. 87, 276404 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Amadon, B., Biermann, S., Georges, A. & Aryasetiawan, F. The α − γ transition of cerium is entropy driven. Phys. Rev. Lett. 96, 066402 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Haule, K. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007).

Article 

Google Scholar
 

Huang, L. & Lu, H. Electronic structure of cerium: a comprehensive first-principles study. Phys. Rev. B 99, 045122 (2019).

Article 
CAS 

Google Scholar
 

Allen, J. et al. Electronic structure of cerium and light rare-earth intermetallics. Adv. Phys. 35, 275–316 (1986).

Article 
CAS 

Google Scholar
 

Matar, S. F. Review on cerium intermetallic compounds: a bird’s eye outlook through DFT. Prog. Solid State Chem. 41, 55–85 (2013).

Article 
CAS 

Google Scholar
 

McMahan, A. K., Huscroft, C., Scalettar, R. T. & Pollock, E. L. Volume-collapse transitions in the rare earth metals. J. Comput.-Aided Mater. Des. 5, 131–162 (1998).

Article 
CAS 

Google Scholar
 

Söderlind, P., Turchi, P. E. A., Landa, A. & Lordi, V. Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J. Phys.: Cond. Matter 26, 416001 (2014).


Google Scholar
 

Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).

Article 
CAS 

Google Scholar
 

Tomczak, J. M. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.:Condens. Matter 30, 183001 (2018).

PubMed 

Google Scholar
 

Brüning, E. M. et al. Cefepo: A heavy fermion metal with ferromagnetic correlations. Phys. Rev. Lett. 101, 117206 (2008).

Article 
PubMed 

Google Scholar
 

Ohishi, K. et al. Development of the heavy-fermion state in Ce2IrIn8 and the effects of ce dilution in (Ce1−xLax)2IrIn8. Phys. Rev. B 80, 125104 (2009).

Article 

Google Scholar
 

Wang, C. et al. Effect of hole doping on superconductivity in compressed CeH9 at high pressures. Phys. Rev. B 104, L020504 (2021).

Article 
CAS 

Google Scholar
 

Jeon, H., Wang, C., Yi, S. & Cho, J.-H. Origin of enhanced chemical precompression in cerium hydride CeH9. Sci. Rep. 10, 16878 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Parlinski, K., Li, Z. Q. & Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997).

Article 
CAS 

Google Scholar
 

Monserrat, B. Electron–phonon coupling from finite differences. J. Condens. Matter Phys. 30, 083001 (2018).

Article 

Google Scholar
 

Koçer, C. P., Haule, K., Pascut, G. L. & Monserrat, B. Efficient lattice dynamics calculations for correlated materials with DFT + DMFT. Phys. Rev. B 102, 245104 (2020).

Article 

Google Scholar
 

Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Khanal, G. & Haule, K. Correlation driven phonon anomalies in bulk FeSe. Phys. Rev. B 102, 241108 (2020).

Article 
CAS 

Google Scholar
 

McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

Article 
CAS 

Google Scholar
 

Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).

Article 
CAS 

Google Scholar
 

Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263–1271 (1962).

Article 

Google Scholar
 

Allen, P. B. & Mitrović, B. Theory of superconducting Tc. Solid State Phys. 37, 1–92 (1983).

Article 

Google Scholar
 

Margine, E. R. & Giustino, F. Anisotropic Migdal-Eliashberg theory using Wannier functions. Phys. Rev. B 87, 024505 (2013).

Article 

Google Scholar
 

Plekhanov, E. et al. Computational materials discovery for lanthanide hydrides at high pressure for high temperature superconductivity. Phys. Rev. Res. 4, 013248 (2022).

Article 
CAS 

Google Scholar
 

Hubbard, J. & Flowers, B. H. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238–257 (1963).

Article 

Google Scholar
 

Gull, E. et al. Continuous-time monte carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).

Article 
CAS 

Google Scholar
 

Tomczak, J. M. & Biermann, S. Effective band structure of correlated materials: the case of VO2. J. Phys. Condens. Matter 19, 365206 (2007).

Article 
PubMed 

Google Scholar
 

Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

Article 
CAS 

Google Scholar
 

Yuan, Z. et al. Correlation-enhanced electron-phonon coupling and superconductivity in (Ba, K)SbO3 superconductors. Phys. Rev. B 105, 014517 (2022).

Article 
CAS 

Google Scholar
 

Yin, Z. P., Kutepov, A. & Kotliar, G. Correlation-enhanced electron-phonon coupling: applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-Tc superconductors. Phys. Rev. X 3, 021011 (2013).

CAS 

Google Scholar
 

Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).

Article 

Google Scholar
 

Zou, Q. et al. Correlation enhanced electron-phonon coupling in FeSe/SrTiO3 at a magic angle. arXiv preprint arXiv:https://arxiv.org/abs/2506.22435 (2025).

Poliukhin, A., Colonna, N., Libbi, F., Poncé, S. & Marzari, N. Carrier mobilities and electron-phonon interactions beyond DFT. arXiv preprint arXiv:https://arxiv.org/abs/2508.14852 (2025).

Yam, Y.-C., Sawatzky, G. A. & Berciu, M. Dressing due to correlations strongly reduces the effect of electron-phonon coupling. Phys. Rev. B 106, 075152 (2022).

Article 
CAS 

Google Scholar
 

Coulter, J. & Millis, A. J. Electron-phonon coupling in correlated materials: insights from the hubbard-holstein model. arXiv preprint arXiv:https://arxiv.org/abs/2505.08081 (2025).

Zheng, F. et al. Prediction of ambient pressure superconductivity in cubic ternary hydrides with MH6 octahedra. Mater. Today Phys. 42, 101374 (2024).

Article 
CAS 

Google Scholar
 

Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).

Article 
CAS 

Google Scholar
 

Worm, P. et al. Spin fluctuations sufficient to mediate superconductivity in nickelates. Phys. Rev. B 109, 235126 (2024).

Article 
CAS 

Google Scholar
 

Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Kaufmann, J. & Held, K. Ana_cont: Python package for analytic continuation. Comput. Phys. Commun. 282, 108519 (2023).

Article 
CAS 

Google Scholar
 

Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. 14, 2717–2744 (2002).

Article 
CAS 

Google Scholar
 

Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).

Article 
CAS 

Google Scholar
 

Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. 21, 395502 (2009).

Article 

Google Scholar
 

Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.:Condens. Matter 29, 465901 (2017).

CAS 
PubMed 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article 
CAS 
PubMed 

Google Scholar
 

Tomczak, J. M., Miyake, T., Sakuma, R. & Aryasetiawan, F. Effective Coulomb interactions in solids under pressure. Phys. Rev. B 79, 235133 (2009).

Article 

Google Scholar
 

Abramovitch, D. J., Zhou, J.-J., Mravlje, J., Georges, A. & Bernardi, M. Combining electron-phonon and dynamical mean-field theory calculations of correlated materials: Transport in the correlated metal Sr2RuO4. Phys. Rev. Mater. 7, 093801 (2023).

Article 
CAS 

Google Scholar
 

Abramovitch, D. J., Coulter, J., Beck, S. & Millis, A. Electron-phonon coupling in correlated metals: a dynamical mean-field theory study. Phys. Rev. B 112, 075113 (2025).

Article 
CAS 

Google Scholar
 

Lloyd-Williams, J. H. & Monserrat, B. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells. Phys. Rev. B 92, 184301 (2015).

Article 

Google Scholar
 

Poncé, S., Margine, E., Verdi, C. & Giustino, F. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

Article 

Google Scholar
 

Lee, H. et al. Electron–phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).

Article 
CAS 

Google Scholar