Ferguson, G. et al. Crustal Groundwater Volumes Greater Than Previously Thought. Geophys Res Lett. 48, e2021GL093549 (2021).

Article 

Google Scholar
 

Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

Article 
CAS 

Google Scholar
 

Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

Article 
CAS 

Google Scholar
 

Fan, Y., Li, H. & Miguez-Macho, G. Global Patterns of Groundwater Table Depth. Science 339, 940–943 (2013).

Article 
CAS 

Google Scholar
 

de Graaf, I. E. M. et al. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Adv. Water Resour. 102, 53–67 (2017).

Article 

Google Scholar
 

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

Article 
CAS 

Google Scholar
 

Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

Article 

Google Scholar
 

Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5, eaav4574 (2019).

Article 

Google Scholar
 

Wada, Y. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surv. Geophys 37, 419–451 (2016).

Article 

Google Scholar
 

Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res 48, W00L06 (2012).

Article 

Google Scholar
 

Condon, L. E. et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res 57, e2020WR029500 (2021).

Article 

Google Scholar
 

Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and Storage in Groundwater Systems. Science 296, 1985–1990 (2002).

Article 
CAS 

Google Scholar
 

Haitjema, H. M. & Mitchell-Bruker, S. Are Water Tables a Subdued Replica of the Topography? Groundwater 43, 781–786 (2005).

Article 
CAS 

Google Scholar
 

Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J. & Huete, A. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19, 4229–4256 (2015).

Article 

Google Scholar
 

Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: An integrated modeling approach. Water Resour. Res. 48 https://doi.org/10.1029/2012WR012319 (2012).

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. 114, 10572 (2017).

Article 
CAS 

Google Scholar
 

Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. (2018).

Cooley, D., Maxwell, R. M. & Smith, S. M. Center Pivot Irrigation Systems and Where to Find Them: A Deep Learning Approach to Provide Inputs to Hydrologic and Economic Models. Front. Water 3 (2021).

Long, D. et al. Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens Environ. 192, 198–216 (2017).

Article 

Google Scholar
 

Rodell, M. et al. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 15, 159–166 (2007).

Article 
CAS 

Google Scholar
 

Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

Article 

Google Scholar
 

Castellazzi, P., Martel, R., Galloway, D. L., Longuevergne, L. & Rivera, A. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations. Groundwater 54, 768–780 (2016).

Article 
CAS 

Google Scholar
 

Naz, B. S., Sharples, W., Ma, Y., Goergen, K. & Kollet, S. Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe. Geosci. Model Dev. 16, 1617–1639 (2023).

Article 

Google Scholar
 

Refsgaard, J. C., Stisen, S. & Koch, J. Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development. Hydrol. Process 36, e14463 (2022).

Article 

Google Scholar
 

Gleeson, T. et al. GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geosci. Model Dev. 14, 7545–7571 (2021).

Article 

Google Scholar
 

Fan, Y. et al. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resour. Res. 55, 1737–1772 (2019).

Article 

Google Scholar
 

Clark, M. P. et al. Improving the theoretical underpinnings of process-based hydrologic models. Water Resour. Res. 52, 2350–2365 (2016).

Article 

Google Scholar
 

Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res 54, 8558–8593 (2018).

Article 

Google Scholar
 

Ransom, K. M. et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci. Total Environ. 601-602, 1160–1172 (2017).

Article 
CAS 

Google Scholar
 

Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K. & Fram, M. S. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Sci. Total Environ. 807, 151065 (2022).

Article 
CAS 

Google Scholar
 

Ma, Y. et al. Water Table Depth Estimates over the Contiguous United States Using a Random Forest Model. Groundwater n/a https://doi.org/10.1111/gwat.13362 (2023).

Koch, J., Berger, H., Henriksen, H. J. & Sonnenborg, T. O. Modelling of the shallow water table at high spatial resolution using random forests. Hydrol. Earth Syst. Sci. 23, 4603–4619 (2019).

Article 

Google Scholar
 

Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res.-Atmos. 112, – (2007).

Maxwell, R. M., Condon, L. E. & Kollet, S. J. A. high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev. 8, 1–15 (2015).

Article 

Google Scholar
 

Tijerina-Kreuzer, D. et al. Continental Scale Hydrostratigraphy: Basin-Scale Testing of Alternative Data-Driven Approaches. Groundwater n/a https://doi.org/10.1111/gwat.13357 (2023).

Ferguson, G. et al. Groundwater deeper than 500 m contributes less than 0.1% of global river discharge. Commun. Earth Environ. 4, 48 (2023).

Article 

Google Scholar
 

Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res 51, 5198–5216 (2015).

Article 

Google Scholar
 

Ferguson, G., McIntosh, J. C., Perrone, D. & Jasechko, S. Competition for shrinking window of low salinity groundwater. Environ. Res. Lett. 13, 114013 (2018).

Article 
CAS 

Google Scholar
 

Jurgens, B. C. et al. Over a third of groundwater in USA public-supply aquifers is Anthropocene-age and susceptible to surface contamination. Commun. Earth Environ. 3, 153 (2022).

Article 

Google Scholar
 

Nace, R. L. Water Management, Agriculture, and Ground-Water Supplies. 12 (US Geological Survey, 1960).

Nace, R. L. in Introduction to Geographical Hydrology (ed R. J. Chorley) 31-47 (Methuen and Co., 1969).

Garmonov, I.V., Konoplyantsev, K. P. V., A.A., Lushnikova, N.P. in World Water Balance and Water Resources of the Earth (ed V. I. Korzun) Ch. 3.6, 50 (UNESCO Press, 1978).

Bonotto, G., Peterson, T. J., Fowler, K. & Western, A. W. Identifying Causal Interactions Between Groundwater and Streamflow Using Convergent Cross-Mapping. Water Resour. Res. 58, e2021WR030231 (2022).

Article 

Google Scholar
 

Fan, Y. Groundwater in the Earth’s critical zone: Relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).

Article 

Google Scholar
 

Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

Article 
CAS 

Google Scholar
 

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

Article 

Google Scholar
 

Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).

Article 

Google Scholar
 

Macdonald, D., Dixon, A., Newell, A. & Hallaways, A. Groundwater flooding within an urbanised flood plain. J. Flood Risk Manag. 5, 68–80 (2012).

Article 

Google Scholar
 

Gorelick, S. M. & Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 51, 3031–3051 (2015).

Article 

Google Scholar
 

Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

Article 
CAS 

Google Scholar
Â