Ali, S. S. et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 771, 144719 (2021).
Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science. 369, 1455–1461 (2020).
Golwala, H., Zhang, X., Iskander, S. M. & Smith, A. L. Solid waste: an overlooked source of microplastics to the environment. Sci. Total Environ. 769, 144581 (2021).
He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. Municipal solid waste (MSW) landfill: a source of microplastics? Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019).
Lin, X. et al. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: study in large-scale landfills, China. J. Hazard. Mater. 457, 131676 (2023).
Tait, P. W. et al. The health impacts of waste incineration: a systematic review. Australian N. Z. J. Public Health 44, 40–48 (2020).
Yang, Z. et al. Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 401, 123429 (2021).
Hahladakis, J. N. & Iacovidou, E. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): focus on recycling. J. Hazard. Mater. 380, 120887 (2019).
Schade, A. et al. Plastic waste recycling — a chemical recycling perspective. ACS Sustain. Chem. Eng. 12, 12270–12288 (2024).
Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).
Kim, M. S. et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123, 9915–9939 (2023).
Shen, L., Haufe, J. & Patel, M. K. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009 (Utrecht University, 2009).
Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).
European Bioplastics. Bioplastics market development update 2022. europeanbioplastics.org https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf (2022).
Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science. 344, 1109–1113 (2014).
Guinée, J. B. et al. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011).
Bishop, G., Styles, D. & Lens, P. N. L. Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycling 168, 105451 (2021).
Walker, S. & Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: a review. J. Clean. Prod. 261, 121158 (2020).
Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the life cycle greenhouse gas emissions from U.S. production of three biobased polymer families. Environ. Sci. Technol. 50, 2846–2858 (2016).
Van Roijen, E. C. & Miller, S. A. A review of bioplastics at end-of-life: linking experimental biodegradation studies and life cycle impact assessments. Resour. Conserv. Recycling 181, 106236 (2022).
Pinlova, B. et al. What can we learn about the climate change impacts of polylactic acid from a review and meta-analysis of lifecycle assessment studies? Sustain. Prod. Consum. 48, 396–406 (2024).
Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science. 374, 71–76 (2021).
Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature. 612, 272–276 (2022).
Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 51, 498–518 (2024).
Corella-Puertas, E., Hajjar, C., Lavoie, J. & Boulay, A.-M. MarILCA characterization factors for microplastic impacts in life cycle assessment: physical effects on biota from emissions to aquatic environments. J. Clean. Prod. 418, 138197 (2023).
Piao, Z., Agyei Boakye, A. A. & Yao, Y. Environmental impacts of biodegradable microplastics. Nat. Chem. Eng. 1, 661–669 (2024).
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
Hermann, B. G., Debeer, L., De Wilde, B., Blok, K. & Patel, M. K. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96, 1159–1171 (2011).
Rossi, V. et al. Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J. Clean. Prod. 86, 132–145 (2015).
Chae, Y. & An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ. Pollut. 240, 387–395 (2018).
Li, W. C., Tse, H. F. & Fok, L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci. Total Environ. 566–567, 333–349 (2016).
de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).
Zhang, G. S., Zhang, F. X. & Li, X. T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci. Total Environ. 670, 1–7 (2019).
Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).
Kwak, J. I. & An, Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 402, 124034 (2021).
Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J. & Svendsen, C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ. Pollut. 255, 113174 (2019).
Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).
Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).
de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).
Thompson, R. C. et al. Twenty years of microplastic pollution research — what have we learned? Science 386, eadl2746 (2024).
Høiberg, M. A., Woods, J. S. & Verones, F. Global distribution of potential impact hotspots for marine plastic debris entanglement. Ecol. Indic. 135, 108509 (2022).
Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179 (2015).
Chen, Q., Allgeier, A., Yin, D. & Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ. Int. 130, 104938 (2019).
Naqash, N., Prakash, S., Kapoor, D. & Singh, R. Interaction of freshwater microplastics with biota and heavy metals: a review. Environ. Chem. Lett. 18, 1813–1824 (2020).
OECD. Global Plastics Outlook: Policy Scenarios to 2060 (OECD Publishing, 2022).
Plastics Europe. Plastics — The Fast Facts 2024 (Plastics Europe, 2024).
Bachmann, M. et al. Towards circular plastics within planetary boundaries. Nat. Sustain. 6, 599–610 (2023).
Hottle, T. A., Bilec, M. M. & Landis, A. E. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycling 122, 295–306 (2017).
Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).
Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).
Cazaudehore, G. et al. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol. Adv. 56, 107916 (2022).
Gastaldi, E. et al. Degradation and environmental assessment of compostable packaging mixed with biowaste in full-scale industrial composting conditions. Bioresour. Technol. 400, 130670 (2024).
Benavides, P. T., Lee, U. & Zarè-Mehrjerdi, O. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J. Clean. Prod. 277, 124010 (2020).
Papong, S. et al. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 65, 539–550 (2014).
Krause, M. J. & Townsend, T. G. Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ. Sci. Technol. Lett. 3, 166–169 (2016).
Kolstad, J. J., Vink, E. T. H., De Wilde, B. & Debeer, L. Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 97, 1131–1141 (2012).
Stloukal, P. et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 42, 31–40 (2015).
Hanson James, L., Yeşiller, N. & Oettle Nicolas, K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136, 804–814 (2010).
Eriksen, M. K., Pivnenko, K., Faraca, G., Boldrin, A. & Astrup, T. F. Dynamic material flow analysis of PET, PE, and PP flows in Europe: evaluation of the potential for circular economy. Environ. Sci. Technol. 54, 16166–16175 (2020).
Klotz, M., Haupt, M. & Hellweg, S. Potentials and limits of mechanical plastic recycling. J. Ind. Ecol. 27, 1043–1059 (2023).
Cabernard, L., Pfister, S., Oberschelp, C. & Hellweg, S. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. 5, 139–148 (2022).
Meng, F., Brandão, M. & Cullen, J. M. Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases. Environ. Sci. Technol. 58, 2716–2727 (2024).
Luan, X. et al. Greenhouse gas emissions associated with plastics in China from 1950 to 2060. Resour. Conserv. Recycling 197, 107089 (2023).
Anshassi, M., Smallwood, T. & Townsend, T. G. Life cycle GHG emissions of MSW landfilling versus incineration: expected outcomes based on US landfill gas collection regulations. Waste Manag. 142, 44–54 (2022).
Posen, I. D., Jaramillo, P., Landis, A. E. & Griffin, W. M. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ. Res. Lett. 12, 034024 (2017).
Wang, X.-Y., Gao, Y. & Tang, Y. Sustainable developments in polyolefin chemistry: progress, challenges, and outlook. Prog. Polym. Sci. 143, 101713 (2023).
Ran, H., Zhang, S., Ni, W. & Jing, Y. Precise activation of C–C bonds for recycling and upcycling of plastics. Chem. Sci. 15, 795–831 (2024).
Somoza-Tornos, A. et al. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis. ACS Sustain. Chem. Eng. 8, 3561–3572 (2020).
Vogt, B. D., Stokes, K. K. & Kumar, S. K. Why is recycling of postconsumer plastics so challenging? ACS Appl. Polym. Mater. 3, 4325–4346 (2021).
Burkart, M. D., Hazari, N., Tway, C. L. & Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 9, 7937–7956 (2019).
Zhong, J. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).
Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).
Kattel, S., RamÃrez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 355, 1296–1299 (2017).
Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change — and how ‘sustainability transition policy’ can help. Proc. Natl Acad. Sci. USA 117, 8664–8668 (2020).
Silva, A. L. P. et al. Microplastics in landfill leachates: the need for reconnaissance studies and remediation technologies. Case Stud. Chem. Environ. Eng. 3, 100072 (2021).
Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L. & Zhao, R. Microplastics in landfill leachate: sources, detection, occurrence, and removal. Environ. Sci. Ecotechnol. 16, 100256 (2023).
Kookos, I. K., Koutinas, A. & Vlysidis, A. Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour. Conserv. Recycling 141, 317–328 (2019).
Muiruri, J. K. et al. Poly(hydroxyalkanoates): production, applications and end-of-life strategies–life cycle assessment nexus. ACS Sustain. Chem. Eng. 10, 3387–3406 (2022).
Suwanmanee, U. et al. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int. J. Life Cycle Assess. 18, 401–417 (2013).
Moretti, C. et al. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycling 169, 105508 (2021).
Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2021).
Tamburini, E. et al. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles — what is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196, 110974 (2021).
Beigbeder, J., Soccalingame, L., Perrin, D., Bénézet, J.-C. & Bergeret, A. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Manag. 83, 184–193 (2019).
Xiong, L. et al. Biodegradable mulch film enhances the environmental sustainability compared with traditional polyethylene film from multidimensional perspectives. Chem. Eng. J. 492, 152219 (2024).
van der Harst, E., Potting, J. & Kroeze, C. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Sci. Total Environ. 494-495, 129–143 (2014).
Mhaddolkar, N., Lodato, C., Tischberger-Aldrian, A., Vollprecht, D. & Fruergaard Astrup, T. Biodegradable plastics — where to throw? A life cycle assessment of waste collection and management pathways in Austria. Waste Manag. 190, 578–592 (2024).
Austin, K. G., Jones, J. P. H. & Clark, C. M. A review of domestic land use change attributable to U.S. biofuel policy. Renew. Sustain. Energy Rev. 159, 112181 (2022).
Kim, T., Bhatt, A., Tao, L. & Benavides, P. T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 380, 135110 (2022).
Prussi, M. et al. CORSIA: the first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew. Sustain. Energy Rev. 150, 111398 (2021).
UNEP. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) (United Nations Environment Programme (UNEP), 2018).
Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics in the US: toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 15, 094034 (2020).
Jaikumar, G., Baas, J., Brun, N. R., Vijver, M. G. & Bosker, T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733–740 (2018).
Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).
Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere. 228, 93–100 (2019).
Askham, C. et al. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. Sci. Total Environ. 859, 160038 (2023).
Schwarz, A. E. et al. Microplastic aquatic impacts included in life cycle assessment. Resour. Conserv. Recycling 209, 107787 (2024).
Maga, D. et al. Methodology to address potential impacts of plastic emissions in life cycle assessment. Int. J. Life Cycle Assess. 27, 469–491 (2022).
Saling, P., Gyuzeleva, L., Wittstock, K., Wessolowski, V. & Griesshammer, R. Life cycle impact assessment of microplastics as one component of marine plastic debris. Int. J. Life Cycle Assess. 25, 2008–2026 (2020).
Zhao, X. & You, F. Life cycle assessment of microplastics reveals their greater environmental hazards than mismanaged polymer waste losses. Environ. Sci. Technol. 56, 11780–11797 (2022).
Rosenbaum, R. K. et al. USEtox — the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–546 (2008).
Pellengahr, F. et al. Modeling marine microplastic emissions in life cycle assessment: characterization factors for biodegradable polymers and their application in a textile case study. Front. Toxicol. 7, 1494220 (2025).
Kawecki, D. & Nowack, B. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).
Beiras, R., Verdejo, E., Campoy-López, P. & Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 406, 124338 (2021).
Lavoie, J., Boulay, A.-M. & Bulle, C. Aquatic micro- and nano-plastics in life cycle assessment: development of an effect factor for the quantification of their physical impact on biota. J. Ind. Ecol. 26, 2123–2135 (2022).
Khalid, N., Aqeel, M., Noman, A., Khan, S. M. & Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 290, 118104 (2021).
Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coast. Shelf Sci. 178, 189–195 (2016).
Henderson, A. D. et al. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 701–709 (2011).
Guo, J.-J. et al. Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020).
Zhao, S. et al. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 176, 104486 (2022).
Wang, W., Ge, J., Yu, X. & Li, H. Environmental fate and impacts of microplastics in soil ecosystems: progress and perspective. Sci. Total Environ. 708, 134841 (2020).
Born, M. P., Brüll, C. & Schüttrumpf, H. Implications of a new test facility for fragmentation investigations on virgin (micro)plastics. Environ. Sci. Technol. 57, 10393–10403 (2023).
Bao, R. et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. J. Hazard. Mater. 439, 129686 (2022).
Brizga, J., Hubacek, K. & Feng, K. The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth 3, 45–53 (2020).
Morão, A. & de Bie, F. Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. J. Polym. Environ. 27, 2523–2539 (2019).
Islam, M. et al. Impact of bioplastics on environment from its production to end-of-life. Process. Saf. Environ. Prot. 188, 151–166 (2024).
Oever, M. V. D., Molenveld, K., Zee, M. V. D. & Bos, H. Bio-based and Biodegradable Plastics — Facts and Figures (Wageningen University, 2017).
Wang, B.-X., Cortes-Peña, Y., Grady, B. P., Huber, G. W. & Zavala, V. M. Techno-economic analysis and life cycle assessment of the production of biodegradable polyaliphatic–polyaromatic polyesters. ACS Sustain. Chem. Eng. 12, 9156–9167 (2024).
Yang, N. et al. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 30, 143–154 (2015).
Aldas, M. et al. The impact of biodegradable plastics in the properties of recycled polyethylene terephthalate. J. Polym. Environ. 29, 2686–2700 (2021).
Zhu, J. & Wang, C. Biodegradable plastics: green hope or greenwashing? Mar. Pollut. Bull. 161, 111774 (2020).
EEA. Bio-waste in Europe — Turning Challenges into Opportunities (European Environment Agency, 2020).
Okori, F., Lederer, J., Komakech, A. J., Schwarzböck, T. & Fellner, J. Plastics and other extraneous matter in municipal solid waste compost: a systematic review of sources, occurrence, implications, and fate in amended soils. Environ. Adv. 15, 100494 (2024).
Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).
NASEM. Municipal Solid Waste Recycling in the United States: Analysis of Current and Alternative Approaches (National Academies of Sciences, Engineering and Medicine, 2025).
European Union. Regulation (EU) 2025/40 of the European Parliament and of the Council of 19 December 2024 on Packaging and Packaging Waste (European Parliament and the Council, 2025).
Brooks, A. L. & Havas, V. Strengthening global plastic policy with systems analysis. Nat. Sustain. 8, 714–723 (2025).
Del Borghi, A. LCA and communication: environmental product declaration. Int. J. Life Cycle Assess. 18, 293–295 (2013).
Moré, F. B., Galindro, B. M. & Soares, S. R. Assessing the completeness and comparability of environmental product declarations. J. Clean. Prod. 375, 133999 (2022).
van der Hulst, M. K. et al. Greenhouse gas benefits from direct chemical recycling of mixed plastic waste. Resour. Conserv. Recycling 186, 106582 (2022).
Merchan, A. L. et al. Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 24, 9428–9449 (2022).
Van Roijen, E. & Miller, S. A. Leveraging biogenic resources to achieve global plastic decarbonization by 2050. Nat. Commun. 16, 7659 (2025).
EEA. Biodegradable and Compostable Plastics — Challenges and Opportunities (European Environment Agency, 2020).
Filiciotto, L. & Rothenberg, G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14, 56–72 (2021).
European Bioplastics. Fact Sheet: What are Bioplastics? (European Bioplastics, 2022).
Saalah, S., Saallah, S., Rajin, M. & Yaser, A. Z. in Advances in Waste Processing Technology (ed. Abu Zahrim, Y.) 127–143 (Springer, 2020).
Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
Rujnić-Sokele, M. & Pilipović, A. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag. Res. 35, 132–140 (2017).