Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys.: Condens. Matter 33, 353001 (2021).


Google Scholar
 

de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

Article 
ADS 

Google Scholar
 

Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys.: Mater. 3, 042006 (2020).


Google Scholar
 

Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

Article 
ADS 

Google Scholar
 

Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

Article 
ADS 

Google Scholar
 

Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

Article 

Google Scholar
 

Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

Article 
ADS 

Google Scholar
 

Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

Article 
ADS 

Google Scholar
 

Claassen, M., Jia, C., Moritz, B. & Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).

Article 
ADS 

Google Scholar
 

Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

Article 
ADS 

Google Scholar
 

Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

Article 

Google Scholar
 

McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

Article 

Google Scholar
 

Aeschlimann, S. et al. Survival of Floquet-Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).

Article 
ADS 

Google Scholar
 

Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

Article 
ADS 

Google Scholar
 

Park, S. et al. Steady Floquet-Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).

Article 
ADS 

Google Scholar
 

Kobayashi, Y. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023).

Uchida, K., Kusaba, S., Nagai, K., Ikeda, T. N. & Tanaka, K. Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe2. Sci. Adv. 8, eabq7281 (2022).

Article 
ADS 

Google Scholar
 

Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

Article 
ADS 

Google Scholar
 

Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).

Article 

Google Scholar
 

Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta. Phys. Rev. B 102, 161403 (2020).

Article 
ADS 

Google Scholar
 

Hübener, H., De Giovannini, U. & Rubio, A. Phonon driven Floquet matter. Nano Lett. 18, 1535–1542 (2018).

Article 
ADS 

Google Scholar
 

Zhang, R.-X. & Das Sarma, S. Anomalous Floquet chiral topological superconductivity in a topological insulator sandwich structure. Phys. Rev. Lett. 127, 067001 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant self-driven exciton-Floquet signatures in time-resolved photoemission spectroscopy of MoS2 from time-dependent GW approach. Proc. Natl Acad. Sci. USA 120, e2301957120 (2023).

Article 

Google Scholar
 

Perfetto, E. & Stefanucci, G. Floquet topological phase of nondriven p-wave nonequilibrium excitonic insulators. Phys. Rev. Lett. 125, 106401 (2020).

Article 
ADS 

Google Scholar
 

Liu, R.-Y. et al. Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy. Sci. Rep. 7, 15981 (2017).

Article 
ADS 

Google Scholar
 

Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. Pump driven normal-to-excitonic insulator transition: Josephson oscillations and signatures of BEC-BCS crossover in time-resolved ARPES. Phys. Rev. Mater. 3, 124601 (2019).

Article 

Google Scholar
 

Ito, S. et al. Build-up and dephasing of Floquet-Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

Article 
ADS 

Google Scholar
 

Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

Article 
ADS 

Google Scholar
 

Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

Article 
ADS 

Google Scholar
 

Parmenter, R. H. & Henson, W. R. Superconductive properties of the excitonic insulator. Phys. Rev. 2, 140–147 (1970).

Article 
ADS 

Google Scholar
 

Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

Article 
ADS 

Google Scholar
 

Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).

Article 

Google Scholar
 

Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

Article 
ADS 

Google Scholar
 

Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

Article 

Google Scholar
 

Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

Article 
ADS 

Google Scholar
 

Bussolotti, F., Yang, J., Kawai, H., Chee, J. Y. & Goh, K. E. J. Influence of many-body effects on hole quasiparticle dynamics in a WS2 monolayer. Phys. Rev. B 103, 045412 (2021).

Article 
ADS 

Google Scholar
 

Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020).

Article 
ADS 

Google Scholar
 

Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

Article 
ADS 

Google Scholar
 

Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

Article 
ADS 

Google Scholar
 

Schönhense, G., Medjanik, K. & Elmers, H.-J. Space-, time- and spin-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 200, 94–118 (2015).

Article 
ADS 

Google Scholar
 

Medjanik, K. et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017).

Article 
ADS 

Google Scholar
 

Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016).

Article 

Google Scholar
 

Grubišić Čabo, A. et al. Observation of ultrafast free carrier dynamics in single layer MoS2. Nano Lett. 15, 5883–5887 (2015).

Article 
ADS 

Google Scholar
 

Liu, F., Ziffer, M. E., Hansen, K. R., Wang, J. & Zhu, X. Direct determination of band-gap renormalization in the photoexcited monolayer MoS2. Phys. Rev. Lett. 122, 246803 (2019).

Article 
ADS 

Google Scholar
 

Liu, F., Li, Q. & Zhu, X.-Y. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405 (2020).

Article 
ADS 

Google Scholar
 

Lin, Y. et al. Exciton-driven renormalization of quasiparticle band structure in monolayer MoS2. Phys. Rev. B 106, L081117 (2022).

Article 
ADS 

Google Scholar
 

Wallauer, R. et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).

Article 
ADS 

Google Scholar
 

Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

Article 

Google Scholar
 

Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).

Article 
ADS 

Google Scholar
 

Karni, O., Esin, I. & Dani, K. M. Through the lens of a momentum microscope: viewing light-induced quantum phenomena in 2D materials. Adv. Mater. 35, e2204120 (2022).

Article 

Google Scholar
 

Jakubczyk, T. et al. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater. 5, 031007 (2018).

Article 

Google Scholar
 

Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

Article 
ADS 

Google Scholar
 

Kwong, N. H., Rupper, G. & Binder, R. Self-consistent T-matrix theory of semiconductor light-absorption and luminescence. Phys. Rev. B 79, 155205 (2009).

Article 
ADS 

Google Scholar
 

Yoshioka, T. & Asano, K. Classical-quantum crossovers in quasi-one-dimensional electron-hole systems: exciton-Mott physics and interband optical spectra. Phys. Rev. B 86, 115314 (2012).

Article 
ADS 

Google Scholar
 

Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys. Rev. B 94, 245303 (2016).

Article 
ADS 

Google Scholar
 

Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

Article 
ADS 

Google Scholar
 

Attaccalite, C., Grüning, M. & Marini, A. Real-time approach to the optical properties of solids and nanostructures: time-dependent Bethe-Salpeter equation. Phys. Rev. B 84, 245110 (2011).

Article 
ADS 

Google Scholar
 

Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions. Proc. Natl Acad. Sci. USA 118, e1906938118 (2021).

Article 

Google Scholar
 

Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

Article 

Google Scholar
 

Ruppert, C., Chernikov, A., Hill, H. M., Rigosi, A. F. & Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 17, 644–651 (2017).

Article 
ADS 

Google Scholar
 

Morita, Y., Yoshioka, K. & Kuwata-Gonokami, M. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor. Nat. Commun. 13, 5388 (2022).

Article 
ADS 

Google Scholar
 

Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).

Article 
ADS 

Google Scholar
 

Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

Article 
ADS 

Google Scholar
 

Murotani, Y. et al. Light-driven electron-hole Bardeen-Cooper-Schrieffer-like state in bulk GaAs. Phys. Rev. Lett. 123, 197401 (2019).

Article 
ADS 

Google Scholar
 

Perfetto, E., Bianchi, S. & Stefanucci, G. Time-resolved ARPES spectra of nonequilibrium excitonic insulators: revealing macroscopic coherence with ultrashort pulses. Phys. Rev. B 101, 041201 (2020).

Article 
ADS 

Google Scholar
 

Glutsch, S. & Zimmermann, R. Coherent optics for pumping near the absorption edge. Phys. Rev. B 45, 5857–5862 (1992).

Article 
ADS 

Google Scholar
 

Chu, H. & Chang, Y. C. Theory of optical spectra of exciton condensates. Phys. Rev. B 54, 5020–5028 (1996).

Article 
ADS 

Google Scholar
 

Östreich, T. & Schönhammer, K. Non-stationary excitonic-insulator states in photoexcited semiconductors. Z. Phys. B 91, 189–197 (1993).

Article 
ADS 

Google Scholar
 

Liu, D. E., Levchenko, A. & Baranger, H. U. Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems. Phys. Rev. Lett. 111, 047002 (2013).

Article 
ADS 

Google Scholar
 

Giovannini, U. D. & Hübener, H. Floquet analysis of excitations in materials. J. Phys.: Mater. 3, 012001 (2020).


Google Scholar
 

Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

Article 
ADS 

Google Scholar
 

McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).

Article 
ADS 

Google Scholar
 

Medina Silva, H. & Goh, K. E. J. A blade structure to direct precursor gases for the growth of uniform large area TMDCS. Patent no. WO/2022/186776, Singapore (2022).

Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).


Google Scholar
 

Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

Article 
ADS 

Google Scholar
 

Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

Article 
ADS 

Google Scholar
 

Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

Article 
ADS 

Google Scholar
 

Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

Article 
ADS 

Google Scholar
 

da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).

Article 
ADS 

Google Scholar
 

Rocca, D., Lu, D. & Galli, G. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 133, 164109 (2010).

Article 
ADS 

Google Scholar
 

Rabani, E., Baer, R. & Neuhauser, D. Time-dependent stochastic Bethe-Salpeter approach. Phys. Rev. B 91, 235302 (2015).

Article 
ADS 

Google Scholar
 

Stefanucci, G. & van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge Univ. Press, 2025).