Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996); https://doi.org/10.1109/SFCS.1996.548464

Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

Article 
ADS 
MathSciNet 

Google Scholar
 

Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

Article 
ADS 
MathSciNet 

Google Scholar
 

Fowler, A. G., Stephens, A. M. & Groszkowski, P. High-threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052312 (2009).

Article 
ADS 

Google Scholar
 

Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. N. J. Phys. 9, 199 (2007).

Article 
MathSciNet 

Google Scholar
 

Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

Article 
ADS 

Google Scholar
 

Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

Article 

Google Scholar
 

Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett. 129, 030501 (2022).

Article 
ADS 

Google Scholar
 

Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

Article 

Google Scholar
 

Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).


Google Scholar
 

Ryan-Anderson, C. et al. High-fidelity teleportation of a logical qubit using transversal gates and lattice surgery. Science 385, 1327–1331 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lacroix, N. et al. Scaling and logic in the colour code on a superconducting quantum processor. Nature 645, 614–619 (2025).

Article 
ADS 

Google Scholar
 

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2023).

Article 
ADS 

Google Scholar
 

Acharya, R. et al. Quantum error correction below the surface code threshold. Nature https://doi.org/10.1038/s41586-024-08449-y (2024).

Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675–680 (2022).

Article 

Google Scholar
 

Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by lattice surgery. N. J. Phys. 14, 123011 (2012).

Article 
MathSciNet 

Google Scholar
 

Bombin, H. & Martin-Delgado, M. A. Quantum measurements and gates by code deformation. J. Phys. A 42, 095302 (2009).

Article 
ADS 
MathSciNet 

Google Scholar
 

Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. Preprint at https://arxiv.org/abs/1407.5103 (2014).

Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

Article 

Google Scholar
 

Erhard, A. et al. Entangling logical qubits with lattice surgery. Nature 589, 220–224 (2021).

Article 

Google Scholar
 

Hetényi, B. & Wootton, J. R. Creating entangled logical qubits in the heavy-hex lattice with topological codes. PRX Quant. https://doi.org/10.1103/PRXQuantum.5.040334 (2024).

Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

Article 
ADS 
MathSciNet 

Google Scholar
 

Høyer, P. & Špalek, R. Quantum fan-out is powerful. Theory Comput. 1, 81–103 (2004).

Article 
MathSciNet 

Google Scholar
 

Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

Article 
ADS 

Google Scholar
 

Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

Article 
ADS 

Google Scholar
 

Gehér, G. P., Jastrzebski, M., Campbell, E. T. & Crawford, O. To reset, or not to reset—that is the question. npj Quantum Inf. 11, 39 (2025).

Article 
ADS 

Google Scholar
 

Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

Article 
ADS 

Google Scholar
 

O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).

Article 
ADS 

Google Scholar
 

Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).

Article 
MathSciNet 

Google Scholar
 

Spitz, S. T., Tarasinski, B., Beenakker, C. W. J. & O’Brien, T. E. Adaptive weight estimator for quantum error correction in a time-dependent environment. Adv. Quant. Technol. 1, 1800012 (2018).

Article 

Google Scholar
 

Remm, A. et al. Experimentally informed decoding of stabilizer codes based on syndrome correlations. Phys. Rev. Research 8, 013044 (2026).

Article 

Google Scholar
 

Liang, Y.-C. et al. Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82, 076001 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Lao, L. & Criger, B. Magic state injection on the rotated surface code. In Proc. 19th ACM International Conference on Computing Frontiers 113–120 (ACM, 2022); https://doi.org/10.1145/3528416.3530237

Ye, Y. et al. Logical magic state preparation with fidelity beyond the distillation threshold on a superconducting quantum processor. Phys. Rev. Lett. 131, 210603 (2023).

Article 
ADS 

Google Scholar
 

Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

Article 
ADS 
MathSciNet 

Google Scholar
 

Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

Article 

Google Scholar
 

Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

Article 
ADS 

Google Scholar
 

Motzoi, F., Gambetta, J. M., Rebentrost, P. & Wilhelm, F. K. Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett. 103, 110501 (2009).

Lazăr, S. et al. Calibration of drive nonlinearity for arbitrary-angle single-qubit gates using error amplification. Phys. Rev. Appl. 20, 024036 (2023).

Article 
ADS 

Google Scholar
 

Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

Article 
ADS 

Google Scholar
 

Gambetta, J. et al. Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement. Phys. Rev. A 76, 012325 (2007).

Article 
ADS 

Google Scholar
 

Swiadek, F. et al. Enhancing dispersive readout of superconducting qubits through dynamic control of the dispersive shift: experiment and theory. PRX Quant. 5, 040326 (2024).

Article 
ADS 

Google Scholar
 

McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

Article 
ADS 

Google Scholar
 

Lacroix, N. et al. Fast flux-activated leakage reduction for superconducting quantum circuits. Phys. Rev. Lett. 134, 120601 (2025).

Article 
ADS 

Google Scholar
 

DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

Article 

Google Scholar
 

Rol, M. A. et al. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Appl. Phys. Lett. 116, 054001 (2020).

Article 
ADS 

Google Scholar
 

Rol, M. A. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).

Article 
ADS 

Google Scholar
 

Negirneac, V. et al. High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett. 126, 220502 (2021).

Article 
ADS 

Google Scholar
 

Lisenfeld, J. et al. Observation of directly interacting coherent two-level systems in an amorphous material. Nat. Commun. 6, 6182 (2015).

Article 
ADS 

Google Scholar
 

Krinner, S. et al. Benchmarking coherent errors in controlled-phase gates due to spectator qubits. Phys. Rev. Appl. 14, 024042 (2020).

Article 
ADS 

Google Scholar