Lanza, M. et al. The growing memristor industry. Nature 640, 613–622 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

Article 

Google Scholar
 

Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

Article 

Google Scholar
 

Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52, 465–479 (2008).

Article 
CAS 

Google Scholar
 

Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Arnaud, F. et al. High density embedded PCM cell in 28 nm FDSOI technology for automotive micro-controller applications. In Proc. IEEE International Electron Devices Meeting 24.2.1–24.2.4 (IEEE, 2020).

Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

Article 
CAS 

Google Scholar
 

Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

Article 
CAS 

Google Scholar
 

Ballmaier, J., Walfort, S. & Salinga, M. Resistance drift of phase change materials beyond the power law. Adv. Electron. Mater. 11, 2400905 (2025).

Viollet, V. et al. Temperature and drift-aware high-level PCM-based array model for reliable hardware IMC design. In Proc. IEEE International Reliability Physics Symposium 1–4 (IEEE, 2025).

Nandakumar, S. R. et al. Precision of synaptic weights programmed in phase-change memory devices for deep learning inference. In Proc. IEEE International Electron Devices Meeting 29.4.1–29.4.4 (IEEE, 2020).

Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cavagna, A. Fragile vs. strong liquids: a saddles-ruled scenario. Europhys. Lett. 53, 490 (2001).

Article 
CAS 

Google Scholar
 

Gupta, P. K. & Kob, W. Basis glass states: new insights from the potential energy landscape. J. Non-Cryst. Solids: X 3, 100031 (2019).

CAS 

Google Scholar
 

Mocanu, F. C. et al. Microscopic observation of two-level systems in a metallic glass model. J. Chem. Phys. 158, 014501 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Stillinger, F. H. & Weber, T. A. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).

Article 
CAS 

Google Scholar
 

Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

Article 
CAS 

Google Scholar
 

Schrøder, T. B., Sastry, S., Dyre, J. C. & Glotzer, S. C. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834–9840 (2000).

Article 

Google Scholar
 

Doliwa, B. & Heuer, A. Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid. Phys. Rev. E 67, 031506 (2003).

Article 
CAS 

Google Scholar
 

Weissman, M. B. Low-frequency noise as a tool to study disordered materials. Annu. Rev. Mater. Res. 26, 395–429 (1996).

Article 
CAS 

Google Scholar
 

Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, 115201 (2016).

Article 

Google Scholar
 

Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).

Article 

Google Scholar
 

Fantini, P. et al. Characterization and modelling of low-frequency noise in PCM devices. In Proc. IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

Nardone, M., Kozub, V. I., Karpov, I. V. & Karpov, V. G. Possible mechanisms for 1/f noise in chalcogenide glasses: a theoretical description. Phys. Rev. B 79, 165206 (2009).

Article 

Google Scholar
 

Ralls, K. S. & Buhrman, R. A. Microscopic study of 1/f noise in metal nanobridges. Phys. Rev. B 44, 5800–5817 (1991).

Article 
CAS 

Google Scholar
 

Parman, C. E., Israeloff, N. E. & Kakalios, J. Random telegraph-switching noise in coplanar current measurements of amorphous silicon. Phys. Rev. B 44, 8391–8394 (1991).

Article 
CAS 

Google Scholar
 

Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: \(\frac{1}{f}\) noise. Rev. Mod. Phys. 53, 497–516 (1981).

Article 
CAS 

Google Scholar
 

Weissman, M. B. \(\frac{1}{f}\) noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).

Article 
CAS 

Google Scholar
 

Yu, C. C. Why study noise due to two level systems: a suggestion for experimentalists. J. Low Temp. Phys. 137, 251–265 (2004).

Article 
CAS 

Google Scholar
 

Fugazza, D., Ielmini, D., Lavizzari, S. & Lacaita, A. L. Random telegraph signal noise in phase change memory devices. In Proc. IEEE International Reliability Physics Symposium 743–749 (IEEE, 2010).

Cobelli, M., Dragoni, D., Caravati, S. & Bernasconi, M. Metal-semiconductor transition in the supercooled liquid phase of the Ge2Sb2Te5 and GeTe compounds. Phys. Rev. Mater. 5, 045004 (2021).

Article 
CAS 

Google Scholar
 

Holle, N., Walfort, S., Mazzarello, R. & Salinga, M. Effect of Peierls-like distortions on transport in amorphous phase change devices. Commun. Mater. 6, 56 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zucchini, W., MacDonald, I. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn (Chapman & Hall/CRC, 2016).

Schreiber, J. pomegranate: fast and flexible probabilistic modeling in Python. J. Mach. Learn. Res. 18, 1–6 (2018).


Google Scholar
 

Sosso, G. C., Colombo, J., Behler, J., Del Gado, E. & Bernasconi, M. Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. J. Phys. Chem. B 118, 13621–13628 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

Article 
CAS 

Google Scholar
 

Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

Article 
PubMed 

Google Scholar
 

Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys.: Condens. Matter 21, 255501 (2009).

CAS 
PubMed 

Google Scholar
 

Konstantinou, K., Mocanu, F. C., Lee, T.-H. & Elliott, S. R. Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5. Nat. Commun. 10, 3065 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Konstantinou, K., Elliott, S. R. & Akola, J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5. J. Mater. Chem. C 10, 6744–6753 (2022).

Article 
CAS 

Google Scholar
 

Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).

Article 
CAS 

Google Scholar
 

Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

Article 
CAS 

Google Scholar
 

Sosso, G. C., Donadio, D., Caravati, S., Behler, J. & Bernasconi, M. Thermal transport in phase-change materials from atomistic simulations. Phys. Rev. B 86, 104301 (2012).

Article 

Google Scholar
 

Middleton, T. F. & Wales, D. J. Energy landscapes of some model glass formers. Phys. Rev. B 64, 024205 (2001).

Article 

Google Scholar
 

Pollak, E., Grabert, H. & Hänggi, P. Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys.91, 4073–4087 (1989).

Article 
CAS 

Google Scholar
 

Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Payvand, M. et al. Self-organization of an inhomogeneous memristive hardware for sequence learning. Nat. Commun. 13, 5793 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

Article 

Google Scholar
 

Dalgaty, T., Vianello, E. & Querlioz, D. Memristors for Bayesian in-memory computing. Nat. Mater. https://doi.org/10.1038/s41563-025-02409-1 (2025).