Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering 3rd edn (CRC Press, 2024).
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. & Zhou, C. The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002).
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences Vol. 12 (Cambridge Univ. Press, 2003).
Acebrón, J., Bonilla, L., Vicente, C. P., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).
Roy, R. & Thornburg, K. S. Jr. Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009 (1994).
Bračič Lotrič, M. & Stefanovska, A. Synchronization and modulation in the human cardiorespiratory system. Physica A 283, 451–461 (2000).
Leloup, J.-C. & Goldbeter, A. Toward a detailed computational model for the mammalian circadian clock. Proc. Natl Acad. Sci. USA 100, 7051–7056 (2003).
Cumin, D. & Unsworth, C. P. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226, 181–196 (2007).
Dumas, G., Nadel, J., Soussignan, R., Martinerie, J. & Garnero, L. Inter-brain synchronization during social interaction. PLoS One 5, e12166 (2010).
Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013).
Peleg, O. A new chapter in the physics of firefly swarms. Nat. Rev. Phys. 6, 72–74 (2024).
Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics 420–422 (Springer, 1975).
Gómez-Gardenes, J., Moreno, Y. & Arenas, A. Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007).
Hong, H., Choi, M.-Y. & Kim, B. J. Synchronization on small-world networks. Phys. Rev. E 65, 026139 (2002).
Arenas, A., Díaz-Guilera, A. & Pérez-Vicente, C. J. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006).
Gómez-Gardenes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).
Stewart, I., Golubitsky, M. & Pivato, M. Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2, 609–646 (2003).
Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. & Roy, R. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).
Aguiar, M. A. D. & Dias, A. P. S. Synchronization and equitable partitions in weighted networks. Chaos 28, 073105 (2018).
Sánchez-García, R. J. Exploiting symmetry in network analysis. Commun. Phys. 3, 87 (2020).
Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).
Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).
Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).
Bick, C., Gross, E., Harrington, H. A. & Schaub, M. T. What are higher-order networks? SIAM Rev. 65, 686–731 (2023).
Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).
Boccaletti, S. et al. The structure and dynamics of networks with higher order interactions. Phys. Rep. 1018, 1–64 (2023).
Majhi, S., Perc, M. & Ghosh, D. Dynamics on higher-order networks: a review. J. R. Soc. Interface 19, 20220043 (2022).
Neuhäuser, L., Mellor, A. & Lambiotte, R. Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev. E 101, 032310 (2020).
Neuhäuser, L., Lambiotte, R. & Schaub, M. T. Consensus dynamics on temporal hypergraphs. Phys. Rev. E 104, 064305 (2021).
Hickok, A., Kureh, Y., Brooks, H. Z., Feng, M. & Porter, M. A. A bounded-confidence model of opinion dynamics on hypergraphs. SIAM J. Appl. Dyn. Syst. 21, 1–32 (2022).
Kim, J. et al. Competition between group interactions and nonlinearity in voter dynamics on hypergraphs. Phys. Rev. E 111, L052301 (2025).
Millán, A. P., Ghorbanchian, R., Defenu, N., Battiston, F. & Bianconi, G. Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Phys. Rev. E 104, 054302 (2021).
Carletti, T., Battiston, F., Cencetti, G. & Fanelli, D. Random walks on hypergraphs. Phys. Rev. E 101, 022308 (2020).
Ferraz de Arruda, G., Aleta, A. & Moreno, Y. Contagion dynamics on higher-order networks. Nat. Rev. Phys. 6, 468–482 (2024).
Millán, A. P. et al. Topology shapes dynamics of higher-order networks. Nat. Phys. 21, 353–361 (2025).
Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).
Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).
Tanaka, T. & Aoyagi, T. Multistable attractors in a network of phase oscillators with three-body interactions. Phys. Rev. Lett. 106, 224101 (2011).
Skardal, P. S. & Arenas, A. Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys. Rev. Lett. 122, 248301 (2019).
Stankovski, T., Ticcinelli, V., McClintock, P. V. & Stefanovska, A. Coupling functions in networks of oscillators. New J. Phys. 17, 035002 (2015).
Rosenblum, M. & Pikovsky, A. Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. Phys. Rev. Lett. 98, 064101 (2007).
Matheny, M. H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).
Skardal, P. S., Arola-Fernández, L., Taylor, D. & Arenas, A. Higher-order interactions can better optimize network synchronization. Phys. Rev. Res. 3, 043193 (2021).
León, I. & Pazó, D. Phase reduction beyond the first order: the case of the mean-field complex Ginzburg–Landau equation. Phys. Rev. E 100, 012211 (2019).
Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev. Res. 2, 033410 (2020).
Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).
Salova, A. & D’Souza, R. M. Cluster synchronization on hypergraphs. Preprint at https://arxiv.org/2101.05464 (2021).
Salova, A. & D’Souza, R. M. Analyzing states beyond full synchronization on hypergraphs requires methods beyond projected networks. Preprint at https://arxiv.org/2107.13712 (2021).
Aguiar, M., Bick, C. & Dias, A. Network dynamics with higher-order interactions: coupled cell hypernetworks for identical cells and synchrony. Nonlinearity 36, 4641–4673 (2023).
Zhang, Y. & Motter, A. E. Symmetry-independent stability analysis of synchronization patterns. SIAM Rev. 62, 817–836 (2020).
Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).
Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41, 1–14 (2016).
Patania, A., Vaccarino, F. & Petri, G. Topological analysis of data. EPJ Data Sci. 6, 7 (2017).
Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).
Burgio, G., Gómez, S. & Arenas, A. Triadic approximation reveals the role of interaction overlap on the spread of complex contagions on higher-order networks. Phys. Rev. Lett. 132, 077401 (2024).
Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos 30, 103117 (2020).
Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks from dynamics. Nat. Commun. 17, 1551 (2026).
Lamata-Otín, S., Malizia, F., Latora, V., Frasca, M. & Gómez-Gardeñes, J. Hyperedge overlap drives synchronizability of systems with higher-order interactions. Phys. Rev. E 111, 034302 (2025).
LaRock, T. & Lambiotte, R. Encapsulation structure and dynamics in hypergraphs. J. Phys. Complex. 4, 045007 (2023).
Kim, J., Lee, D.-S. & Goh, K.-I. Contagion dynamics on hypergraphs with nested hyperedges. Phys. Rev. E 108, 034313 (2023).
Skardal, P. S., Adhikari, S. & Restrepo, J. G. Multistability in coupled oscillator systems with higher-order interactions and community structure. Chaos 33, 023140 (2023).
Adhikari, S., Restrepo, J. G. & Skardal, P. S. Synchronization of phase oscillators on complex hypergraphs. Chaos 33, 033116 (2023).
Kim, J.-H. & Goh, K.-I. Higher-order components dictate higher-order contagion dynamics in hypergraphs. Phys. Rev. Lett. 132, 087401 (2024).
Malizia, F., Guzmán, A., Iacopini, I. & Kiss, I. Z. Disentangling the role of heterogeneity and hyperedge overlap in explosive contagion on higher-order networks. Phys. Rev. Lett. 135, 207401 (2025).
Malizia, F., Lamata-Otín, S., Frasca, M., Latora, V. & Gómez-Gardeñes, J. Hyperedge overlap drives explosive transitions in systems with higher-order interactions. Nat. Commun. 16, 555 (2025).
Eriksson, A., Edler, D., Rojas, A., de Domenico, M. & Rosvall, M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun. Phys. 4, 133 (2021).
Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).
Ruggeri, N., Contisciani, M., Battiston, F. & De Bacco, C. Community detection in large hypergraphs. Sci. Adv. 9, eadg9159 (2023).
Golubitsky, M. & Stewart, I. The Symmetry Perspective Vol. 200 (Birkhäuser Verlag, 2002). From equilibrium to chaos in phase space and physical space.
Ashwin, P. & Swift, J. W. The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992).
Bick, C., Ashwin, P. & Rodrigues, A. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26, 094814 (2016).
Wiley, D. A., Strogatz, S. H. & Girvan, M. The size of the sync basin. Chaos 16, 015103 (2006).
Zhang, Y. & Strogatz, S. H. Basins with tentacles. Phys. Rev. Lett. 127, 194101 (2021).
Delabays, R., Tyloo, M. & Jacquod, P. The size of the sync basin revisited. Chaos 27, 103109 (2017).
Díaz-Guilera, A., Marinelli, D. & Pérez-Vicente, C. J. Exploring the interplay of excitatory and inhibitory interactions in the Kuramoto model on circle topologies. Chaos 34, 043134 (2024).
Sclosa, D. From combinatorics to geometry: the dynamics of graph gradient diffusion. Geom. Dedic. 219, 6 (2025).
Komarov, M. & Pikovsky, A. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling. Phys. Rev. E 92, 020901 (2015).
Kundu, S. & Ghosh, D. Higher-order interactions promote chimera states. Phys. Rev. E 105, L042202 (2022).
Bick, C., Böhle, T. & Omel’chenko, O. Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions. J. Phys. Complex. 5, 025026 (2023).
Zhang, Y., Skardal, P. S., Battiston, F., Petri, G. & Lucas, M. Deeper but smaller: higher-order interactions increase linear stability but shrink basins. Sci. Adv. 10, ado8049 (2024).
Bick, C. Heteroclinic switching between chimeras. Phys. Rev. E 97, 050201 (2018).
Bick, C. Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small populations. J. Nonlinear Sci. 29, 2571–2600 (2019).
Bick, C. & Lohse, A. Heteroclinic dynamics of localized frequency synchrony: stability of heteroclinic cycles and networks. J. Nonlinear Sci. 29, 2547–2570 (2019).
Watanabe, S. & Strogatz, S. H. Integrability of a globally coupled oscillator array. Phys. Rev. Lett. 70, 2391 (1993).
Watanabe, S. & Strogatz, S. H. Constants of motion for superconducting Josephson arrays. Physica D 74, 197–253 (1994).
Ott, E. & Antonsen, T. M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).
Ott, E. & Antonsen, T. M. Long time evolution of phase oscillator systems. Chaos 19, 023117 (2009).
Pikovsky, A. & Rosenblum, M. Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D 240, 872–881 (2011).
Bick, C., Goodfellow, M., Laing, C. R. & Martens, E. A. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J. Math. Neurosci. 10, 9 (2020).
Gong, C. C. & Pikovsky, A. Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles. Phys. Rev. E 100, 062210 (2019).
Bick, C., Böhle, T. & Kuehn, C. Phase oscillator networks with nonlocal higher-order interactions: twisted states, stability, and bifurcations. SIAM J. Appl. Dyn. Syst. 22, 1590–1638 (2023).
Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).
Ghosh, S. et al. Dimension reduction in higher-order contagious phenomena. Chaos 33, 053117 (2023).
Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3, 218 (2020).
Skardal, P. S. & Xu, C. Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions. Chaos 32, 053120 (2022).
Sabhahit, N. G., Khurd, A. S. & Jalan, S. Prolonged hysteresis in the Kuramoto model with inertia and higher-order interactions. Phys. Rev. E 109, 024212 (2024).
Anwar, M. S., Sar, G. K., Perc, M. & Ghosh, D. Collective dynamics of swarmalators with higher-order interactions. Commun. Phys. 7, 59 (2024).
Anwar, M. S., Sar, G. K., Carletti, T. & Ghosh, D. A two-dimensional swarmalator model with higher-order interactions. SIAM J. Appl. Math. 85, 1475–1499 (2025).
Hu, Y. et al. Effect of spatial-phase drift on the synchronization of swarmalators with higher-order interactions. Commun. Phys. 8, 177 (2025).
Chen, C., Surana, A., Bloch, M. A. & Rajapakse, I. Controllability of hypergraphs. IEEE Trans. Netw. Sci. Eng. 8, 1646–1657 (2021).
De Lellis, P., Della Rossa, F., Lo Ludice, F. & Liuzza, D. Pinning control of linear systems on hypergraphs. Eur. J. Control 74, 100836 (2023).
Della Rossa, F., Liuzza, D., Lo Ludice, F. & De Lellis, P. Emergence and control of synchronization in networks with directed many-body interactions. Phys. Rev. Lett. 131, 207401 (2023).
Rizzello, R. & De Lellis, P. Pinning control in networks of nonidentical systems with many-body interactions. IEEE Control Syst. Lett. 8, 1313–1318 (2024).
Muolo, R., Gambuzza, L. V., Nakao, H. & Frasca, M. Pinning control of chimera states in systems with higher-order interactions. Nonlinear Dyn. 113, 28233–28255 (2025).
Wang, Y. & Zhao, Y. Synchronization of directed higher-order networks via pinning control. Chaos Solitons Fractals 185, 115062 (2024).
Li, K., Lin, Y. & Wang, J. Synchronization of multi-directed hypergraphs via adaptive pinning control. Chaos Solitons Fractals 184, 115000 (2024).
Xia, R. & Xiang, L. Pinning control of simplicial complexes. Eur. J. Control 77, 100994 (2024).
Moriamé, M., Lucas, M. & Carletti, T. Hamiltonian control to desynchronize Kuramoto oscillators with higher-order interactions. Phys. Rev. E 111, 044307 (2025).
Skardal, P. S., Ott, E. & Restrepo, J. G. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 036208 (2011).
Xu, C., Wang, X. & Skardal, P. S. Bifurcation analysis and structural stability of simplicial oscillator populations. Phys. Rev. Res. 2, 023281 (2020).
Xu, C. & Skardal, P. S. Spectrum of extensive multiclusters in the Kuramoto model with higher-order interactions. Phys. Rev. Res. 3, 013013 (2021).
Skardal, P. S. & Arenas, A. Memory selection and information switching in oscillator networks with higher-order interactions. J. Phys. Complex. 2, 015003 (2020).
Carletti, T., Fanelli, D. & Nicoletti, S. Dynamical systems on hypergraphs. J. Phys. Complex. 1, 035006 (2020).
de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).
St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. & Hébert-Dufresne, L. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. Phys. Rev. E 103, 032301 (2021).
Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).
Mulas, R., Kuehn, C. & Jost, J. Coupled dynamics on hypergraphs: master stability of steady states and synchronization. Phys. Rev. E 101, 062313 (2020).
Nishikawa, T., Motter, A. E., Lai, Y.-C. & Hoppensteadt, F. C. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).
Nishikawa, T. & Motter, A. E. Maximum performance at minimum cost in network synchronization. Physica D 224, 77–89 (2006).
Nishikawa, T. & Motter, A. E. Synchronization is optimal in nondiagonalizable networks. Phys. Rev. E 73, 065106 (2006).
Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl Acad. Sci. USA 107, 10342–10347 (2010).
Anwar, M. S., Ghosh, D. & Carletti, T. Global synchronization on time-varying higher-order structures. J. Phys. Complex. 5, 015020 (2024).
Rajwani, P., Suman, A. & Jalan, S. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions. Chaos 33, 061102 (2023).
Pal, P. K., Anwar, M. S., Perc, M. & Ghosh, D. Global synchronization in generalized multilayer higher-order networks. Phys. Rev. Res. 6, 033003 (2024).
Rathore, V., Suman, A. & Jalan, S. Synchronization onset for contrarians with higher-order interactions in multilayer systems. Chaos 33, 091105 (2023).
Anwar, M. S., Jenifer, S. N., Muruganandam, P., Ghosh, D. & Carletti, T. Synchronization in adaptive higher-order networks. Phys. Rev. E 110, 064305 (2024).
Gallo, L. et al. Synchronization induced by directed higher-order interactions. Commun. Phys. 5, 263 (2022).
Aguiar, M., Ashwin, P., Dias, A. & Field, M. Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation. J. Nonlinear Sci. 21, 271–323 (2011).
Golubitsky, M., Stewart, I. & Török, A. Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4, 78–100 (2005).
Nijholt, E., Rink, B. & Sanders, J. Graph fibrations and symmetries of network dynamics. J. Differ. Equ. 261, 4861–4896 (2016).
Nijholt, E., Rink, B. W. & Schwenker, S. Quiver representations and dimension reduction in dynamical systems. SIAM J. Appl. Dyn. Syst. 19, 2428–2468 (2020).
Makse, H. A., Boldi, P., Sorrentino, F. & Stewart, I. Symmetries of living systems: symmetry fibrations and synchronization in biological networks. Preprint at https://arxiv.org/2502.18713 (2025).
Antoneli, F. & Stewart, I. Symmetry and synchrony in coupled cell networks 1: fixed-point spaces. Int. J. Bifurcat. Chaos 16, 559–577 (2006).
Schaub, M. T. et al. Graph partitions and cluster synchronization in networks of oscillators. Chaos 26, 094821 (2016).
Kamei, H. & Cock, P. J. Computation of balanced equivalence relations and their lattice for a coupled cell network. SIAM J. Appl. Dyn. Syst. 12, 352–382 (2013).
Zhang, Y., Latora, V. & Motter, A. E. Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys. 4, 195 (2021).
Bick, C. & von der Gracht, S. Heteroclinic dynamics in network dynamical systems with higher-order interactions. J. Complex Netw. 12, cnae009 (2024).
Kovalenko, K. et al. Contrarians synchronize beyond the limit of pairwise interactions. Phys. Rev. Lett. 127, 258301 (2021).
Li, X., Ghosh, D. & Lei, Y. Chimera states in coupled pendulum with higher-order interaction. Chaos Solitons Fractals 170, 113325 (2023).
Muolo, R., Njougouo, T., Gambuzza, L. V., Carletti, T. & Frasca, M. Phase chimera states on nonlocal hyperrings. Phys. Rev. E 109, L022201 (2024).
Wang, Z., Chen, M., Xi, X., Tian, H. & Yang, R. Multi-chimera states in a higher order network of Fitzhugh–Nagumo oscillators. Eur. Phys. J. Spec. Top. 233, 779–786 (2024).
Djeudjo, R. T., Carletti, T., Nakao, H. & Muolo, R. Chimera states on m-directed hypergraphs. Preprint at https://arxiv.org/2506.12511 (2025).
Fenichel, N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1972).
Nakao, H. Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57, 188–214 (2016).
Pietras, B. & Daffertshofer, A. Network dynamics of coupled oscillators and phase reduction techniques. Phys. Rep. 819, 1–105 (2019).
Mau, E. T., Omel’chenko, O. E. & Rosenblum, M. Phase reduction explains chimera shape: when multibody interaction matters. Phys. Rev. E 110, L022201 (2024).
Gengel, E., Teichmann, E., Rosenblum, M. & Pikovsky, A. High-order phase reduction for coupled oscillators. J. Phys. Complex. 2, 015005 (2020).
Bick, C., Böhle, T. & Kuehn, C. Higher-order network interactions through phase reduction for oscillators with phase-dependent amplitude. J. Nonlinear Sci. 34, 77 (2024).
von der Gracht, S., Nijholt, E. & Rink, B. A parametrisation method for high-order phase reduction in coupled oscillator networks. Preprint at https://arxiv.org/2306.0332 (2023).
Ashwin, P. & Rodrigues, A. Hopf normal form with sN symmetry and reduction to systems of nonlinearly coupled phase oscillators. Physica D 325, 14–24 (2016).
León, I., Muolo, R., Hata, S. & Nakao, H. Theory of phase reduction from hypergraphs to simplicial complexes: a general route to higher-order Kuramoto models. Physica D 482, 134858 (2025).
Kori, H., Rusin, C. G., Kiss, I. Z. & Hudson, J. L. Synchronization engineering: theoretical framework and application to dynamical clustering. Chaos 18, 026111 (2008).
Kiss, I. Z. Synchronization engineering. Curr. Opin. Chem. Eng. 21, 1–9 (2018).
Lück, S. & Pikovsky, A. Dynamics of multi-frequency oscillator ensembles with resonant coupling. Phys. Lett. A 375, 2714–2719 (2011).
Swift, J. W., Strogatz, S. H. & Wiesenfeld, K. Averaging of globally coupled oscillators. Physica D 55, 239–250 (1992).
Sanders, J. A., Verhulst, F. & Murdock, J. Averaging Methods in Nonlinear Dynamical Systems Vol. 59 (Springer, 2007).
Ocampo-Espindola, J. L., Kiss, I. Z., Bick, C. & Wedgwood, K. C. A. Strong coupling yields abrupt synchronization transitions in coupled oscillators. Phys. Rev. Res. 6, 033328 (2024).
Kuehn, C. & Bick, C. A universal route to explosive phenomena. Sci. Adv. 7, eabe3824 (2021).
Mau, E. T. K., Omel’chenko, O. E. & Rosenblum, M. Phase reduction explains chimera shape: when multibody interaction matters. Phys. Rev. E 110, L022201 (2024).
Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).
De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8, 717–729 (2010).
von der Gracht, S., Nijholt, E. & Rink, B. Hypernetworks: cluster synchronization is a higher-order effect. SIAM J. Appl. Math. 83, 2329–2353 (2023).
Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).
Kirkley, A., Felippe, H. & Battiston, F. Structural reducibility of hypergraphs. Phys. Rev. Lett. 135, 247401 (2025).
Kadanoff, L. P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 2, 263–272 (1966).
Serrano, M. Á, Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).
García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).
Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).
Nurisso, M. et al. Higher-order Laplacian renormalization. Nat. Phys. 21, 661–668 (2025).
Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).
Wang, H., Ma, C., Chen, H.-S., Lai, Y.-C. & Zhang, H.-F. Full reconstruction of simplicial complexes from binary contagion and Ising data. Nat. Commun. 13, 3043 (2022).
Wang, Y. & Kleinberg, J. Supervised hypergraph reconstruction. Preprint at https://arxiv.org/2211.13343 (2022).
Wegner, A. E. & Olhede, S. C. Nonparametric inference of higher order interaction patterns in networks. Commun. Phys. 7, 258 (2024).
Tabar, M. R. R. et al. Revealing higher-order interactions in high-dimensional complex systems: a data-driven approach. Phys. Rev. X 14, 011050 (2024).
Li, X. et al. Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction. Nat. Commun. 15, 2506 (2024).
Niedostatek, M. et al. Mining higher-order triadic interactions. Nat. Commun. 16, 11613 (2025).
Delabays, R., De Pasquale, G., Dörfler, F. & Zhang, Y. Hypergraph reconstruction from dynamics. Nat. Commun. 16, 2691 (2025).
Kralemann, B., Pikovsky, A. & Rosenblum, M. Reconstructing phase dynamics of oscillator networks. Chaos 21, 025104 (2011).
Kralemann, B., Pikovsky, A. & Rosenblum, M. Detecting triplet locking by triplet synchronization indices. Phys. Rev. E 87, 052904 (2013).
Kralemann, B., Pikovsky, A. & Rosenblum, M. Reconstructing effective phase connectivity of oscillator networks from observations. New J. Phys. 16, 085013 (2014).
Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).
Lizotte, S., Young, J.-G. & Allard, A. Hypergraph reconstruction from uncertain pairwise observations. Sci. Rep. 13, 21364 (2023).
Varley, T. F., Pope, M., Puxeddu, M. G., Joshua, F. & Sporns, O. Partial entropy decomposition reveals higher-order information structures in human brain activity. Proc. Natl Acad. Sci. USA 120, e2300888120 (2023).
Santoro, A., Battiston, F., Petri, G. & Amico, E. Higher-order organization of multivariate time series. Nat. Phys. 19, 221–229 (2023).
Santoro, A., Battiston, F., Lucas, M., Petri, G. & Amico, E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat. Commun. 15, 10244 (2024).
Malizia, F. et al. Reconstructing higher-order interactions in coupled dynamical systems. Nat. Commun. 15, 5184 (2024).
Zang, Y. et al. Stepwise reconstruction of higher-order networks from dynamics. Chaos 34, 073156 (2024).
Casadiego, J., Nitzan, M., Hallerberg, S. & Timme, M. Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8, 2192 (2017).
Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).
Nijholt, E., Ocampo-Espindola, J. L., Eroglu, D., Kiss, I. Z. & Pereira, T. Emergent hypernetworks in weakly coupled oscillators. Nat. Commun. 13, 4849 (2022).
Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Proc. 32nd Conference on Neural Information Processing Systems (NeurIPS, 2018).
Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Rev. 62, 353–391 (2020).
Sampson, C. R., Restrepo, J. G. & Porter, M. A. Oscillatory and excitable dynamics in an opinion model with group opinions. Phys. Rev. E 112, 024303 (2025).
Nurisso, M. et al. A unified framework for simplicial Kuramoto models. Chaos 34, 053118 (2024).
Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).
Carletti, T., Giambagli, L. & Bianconi, G. Global topological synchronization on simplicial and cell complexes. Phys. Rev. Lett. 130, 187401 (2023).
Arnaudon, A., Peach, R. L., Petri, G. & Expert, P. Connecting hodge and Sakaguchi–Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes. Commun. Phys. 5, 211 (2022).
Ghorbanchian, R., Restrepo, J. G., Torres, J. J. & Bianconi, G. Higher-order simplicial synchronization of coupled topological signals. Commun. Phys. 4, 120 (2021).
Bianconi, G. The topological Dirac equation of networks and simplicial complexes. J. Phys. Complex. 2, 035022 (2021).
Muolo, R., Carletti, T. & Bianconi, G. The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links. Chaos Solitons Fractals 178, 114312 (2024).
Calmon, L., Krishnagopal, S. & Bianconi, G. Local Dirac synchronization on networks. Chaos 33, 033117 (2023).
Berner, R., Gross, T., Kuehn, C., Kurths, J. & Yanchuk, S. Adaptive dynamical networks. Phys. Rep. 1031, 1–59 (2023).
Kachhvah, A. D. & Jalan, S. First-order route to antiphase clustering in adaptive simplicial complexes. Phys. Rev. E 105, L062203 (2022).
Sharma, A., Rajwani, P. & Jalan, S. Synchronization transitions in adaptive Kuramoto–Sakaguchi oscillators with higher-order interactions. Chaos 34, 081103 (2024).
Li, G. J., Luo, J. & Porter, M. A. Bounded-confidence models of opinion dynamics with adaptive confidence bounds. SIAM J. Appl. Dyn. Syst. 24, 994–1041 (2025).
Horstmeyer, L. & Kuehn, C. Adaptive voter model on simplicial complexes. Phys. Rev. E 101, 022305 (2020).
Golovin, A., Mölter, J. & Kuehn, C. Polyadic opinion formation: the adaptive voter model on a hypergraph. Ann. Phys. 536, 2300342 (2024).
Schlager, D., Clauß, K. & Kuehn, C. Stability analysis of multiplayer games on adaptive simplicial complexes. Chaos 32, 053128 (2022).
Robiglio, T., Di Gaetano, L., Altieri, A., Petri, G. & Battiston, F. Higher-order Ising model on hypergraphs. Phys. Rev. E 112, L022301 (2025).
Son, G., Lee, D.-S. & Goh, K.-I. Phase transitions in the simplicial Ising model on hypergraphs. Preprint at https://arxiv.org/2411.19080 (2024).
Kiss, I. Z., Iacopini, I., Simon, P. L. & Georgiou, N. Insights from exact social contagion dynamics on networks with higher-order structures. J. Complex Netw. 11, cnad044 (2023).
Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).
Gibbs, T., Levin, S. A. & Levine, J. M. Coexistence in diverse communities with higher-order interactions. Proc. Natl Acad. Sci. USA 119, e2205063119 (2022).
Neri, M. et al. A taxonomy of neuroscientific strategies based on interaction orders. Eur. J. Neurosci. 61, e16676 (2025).
Geli, S. M., Lynn, C. W., Kringelbach, M. L., Deco, G. & Perl, Y. S. Non-equilibrium whole-brain dynamics arise from pairwise interactions. Cell Rep. Phys. Sci. 6, 102464 (2025).
Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).
Majhi, S. et al. Patterns of neuronal synchrony in higher-order networks. Phys. Life Rev. 52, 144–170 (2025).
Santoro, A., Nurisso, M. & Petri, G. From nodes to edges: edge-based Laplacians for brain signal processing. In Proc. 33rd European Signal Processing Conference (EUSIPCO) 1084–1088 (IEEE, 2025).
Santoro, A. et al. Beyond pairwise interactions: charting higher-order models of brain function. Preprint at bioRxiv https://doi.org/10.1101/2025.06.24.661306 (2025).
Bick, C., Rink, B. & de Wolff, B. A. J. When time delays and phase lags are not the same: higher-order phase reduction unravels delay-induced synchronization in oscillator networks. Preprint at https://arxiv.org/2404.11340 (2024).