Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering 3rd edn (CRC Press, 2024).

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. & Zhou, C. The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002).

Article 
MathSciNet 
ADS 

Google Scholar
 

Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences Vol. 12 (Cambridge Univ. Press, 2003).

Acebrón, J., Bonilla, L., Vicente, C. P., Ritort, F. & Spigler, R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

Article 
ADS 

Google Scholar
 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

Article 
MathSciNet 
ADS 

Google Scholar
 

Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

Article 
MathSciNet 
ADS 

Google Scholar
 

Roy, R. & Thornburg, K. S. Jr. Experimental synchronization of chaotic lasers. Phys. Rev. Lett. 72, 2009 (1994).

Article 
ADS 

Google Scholar
 

Bračič Lotrič, M. & Stefanovska, A. Synchronization and modulation in the human cardiorespiratory system. Physica A 283, 451–461 (2000).

Article 
ADS 

Google Scholar
 

Leloup, J.-C. & Goldbeter, A. Toward a detailed computational model for the mammalian circadian clock. Proc. Natl Acad. Sci. USA 100, 7051–7056 (2003).

Article 
ADS 

Google Scholar
 

Cumin, D. & Unsworth, C. P. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226, 181–196 (2007).

Article 
MathSciNet 
ADS 

Google Scholar
 

Dumas, G., Nadel, J., Soussignan, R., Martinerie, J. & Garnero, L. Inter-brain synchronization during social interaction. PLoS One 5, e12166 (2010).

Article 
ADS 

Google Scholar
 

Motter, A. E., Myers, S. A., Anghel, M. & Nishikawa, T. Spontaneous synchrony in power-grid networks. Nat. Phys. 9, 191–197 (2013).

Article 

Google Scholar
 

Peleg, O. A new chapter in the physics of firefly swarms. Nat. Rev. Phys. 6, 72–74 (2024).

Article 

Google Scholar
 

Kuramoto, Y. Self-entrainment of a population of coupled non-linear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics 420–422 (Springer, 1975).

Gómez-Gardenes, J., Moreno, Y. & Arenas, A. Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007).

Article 
ADS 

Google Scholar
 

Hong, H., Choi, M.-Y. & Kim, B. J. Synchronization on small-world networks. Phys. Rev. E 65, 026139 (2002).

Article 
ADS 

Google Scholar
 

Arenas, A., Díaz-Guilera, A. & Pérez-Vicente, C. J. Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006).

Article 
ADS 

Google Scholar
 

Gómez-Gardenes, J., Gómez, S., Arenas, A. & Moreno, Y. Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011).

Article 
ADS 

Google Scholar
 

Stewart, I., Golubitsky, M. & Pivato, M. Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dyn. Syst. 2, 609–646 (2003).

Article 
MathSciNet 
ADS 

Google Scholar
 

Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E. & Roy, R. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014).

Article 
ADS 

Google Scholar
 

Aguiar, M. A. D. & Dias, A. P. S. Synchronization and equitable partitions in weighted networks. Chaos 28, 073105 (2018).

Article 
MathSciNet 
ADS 

Google Scholar
 

Sánchez-García, R. J. Exploiting symmetry in network analysis. Commun. Phys. 3, 87 (2020).

Article 

Google Scholar
 

Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).

Article 

Google Scholar
 

Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).

Bick, C., Gross, E., Harrington, H. A. & Schaub, M. T. What are higher-order networks? SIAM Rev. 65, 686–731 (2023).

Article 
MathSciNet 

Google Scholar
 

Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

Article 

Google Scholar
 

Boccaletti, S. et al. The structure and dynamics of networks with higher order interactions. Phys. Rep. 1018, 1–64 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Majhi, S., Perc, M. & Ghosh, D. Dynamics on higher-order networks: a review. J. R. Soc. Interface 19, 20220043 (2022).

Article 

Google Scholar
 

Neuhäuser, L., Mellor, A. & Lambiotte, R. Multibody interactions and nonlinear consensus dynamics on networked systems. Phys. Rev. E 101, 032310 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Neuhäuser, L., Lambiotte, R. & Schaub, M. T. Consensus dynamics on temporal hypergraphs. Phys. Rev. E 104, 064305 (2021).

Article 
MathSciNet 
ADS 

Google Scholar
 

Hickok, A., Kureh, Y., Brooks, H. Z., Feng, M. & Porter, M. A. A bounded-confidence model of opinion dynamics on hypergraphs. SIAM J. Appl. Dyn. Syst. 21, 1–32 (2022).

Article 
MathSciNet 

Google Scholar
 

Kim, J. et al. Competition between group interactions and nonlinearity in voter dynamics on hypergraphs. Phys. Rev. E 111, L052301 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Millán, A. P., Ghorbanchian, R., Defenu, N., Battiston, F. & Bianconi, G. Local topological moves determine global diffusion properties of hyperbolic higher-order networks. Phys. Rev. E 104, 054302 (2021).

Article 
MathSciNet 
ADS 

Google Scholar
 

Carletti, T., Battiston, F., Cencetti, G. & Fanelli, D. Random walks on hypergraphs. Phys. Rev. E 101, 022308 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Ferraz de Arruda, G., Aleta, A. & Moreno, Y. Contagion dynamics on higher-order networks. Nat. Rev. Phys. 6, 468–482 (2024).

Article 

Google Scholar
 

Millán, A. P. et al. Topology shapes dynamics of higher-order networks. Nat. Phys. 21, 353–361 (2025).

Article 

Google Scholar
 

Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).

Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).

Article 
MathSciNet 
ADS 

Google Scholar
 

Tanaka, T. & Aoyagi, T. Multistable attractors in a network of phase oscillators with three-body interactions. Phys. Rev. Lett. 106, 224101 (2011).

Article 
ADS 

Google Scholar
 

Skardal, P. S. & Arenas, A. Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes. Phys. Rev. Lett. 122, 248301 (2019).

Article 
ADS 

Google Scholar
 

Stankovski, T., Ticcinelli, V., McClintock, P. V. & Stefanovska, A. Coupling functions in networks of oscillators. New J. Phys. 17, 035002 (2015).

Article 
ADS 

Google Scholar
 

Rosenblum, M. & Pikovsky, A. Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. Phys. Rev. Lett. 98, 064101 (2007).

Article 
ADS 

Google Scholar
 

Matheny, M. H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

Article 
MathSciNet 

Google Scholar
 

Skardal, P. S., Arola-Fernández, L., Taylor, D. & Arenas, A. Higher-order interactions can better optimize network synchronization. Phys. Rev. Res. 3, 043193 (2021).

Article 

Google Scholar
 

León, I. & Pazó, D. Phase reduction beyond the first order: the case of the mean-field complex Ginzburg–Landau equation. Phys. Rev. E 100, 012211 (2019).

Article 
MathSciNet 
ADS 

Google Scholar
 

Lucas, M., Cencetti, G. & Battiston, F. Multiorder Laplacian for synchronization in higher-order networks. Phys. Rev. Res. 2, 033410 (2020).

Article 

Google Scholar
 

Gambuzza, L. V. et al. Stability of synchronization in simplicial complexes. Nat. Commun. 12, 1255 (2021).

Article 
ADS 

Google Scholar
 

Salova, A. & D’Souza, R. M. Cluster synchronization on hypergraphs. Preprint at https://arxiv.org/2101.05464 (2021).

Salova, A. & D’Souza, R. M. Analyzing states beyond full synchronization on hypergraphs requires methods beyond projected networks. Preprint at https://arxiv.org/2107.13712 (2021).

Aguiar, M., Bick, C. & Dias, A. Network dynamics with higher-order interactions: coupled cell hypernetworks for identical cells and synchrony. Nonlinearity 36, 4641–4673 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Zhang, Y. & Motter, A. E. Symmetry-independent stability analysis of synchronization patterns. SIAM Rev. 62, 817–836 (2020).

Article 
MathSciNet 

Google Scholar
 

Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

Article 
ADS 

Google Scholar
 

Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in neural data. J. Comput. Neurosci. 41, 1–14 (2016).

Article 
MathSciNet 

Google Scholar
 

Patania, A., Vaccarino, F. & Petri, G. Topological analysis of data. EPJ Data Sci. 6, 7 (2017).

Article 

Google Scholar
 

Zhang, Y., Lucas, M. & Battiston, F. Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes. Nat. Commun. 14, 1605 (2023).

Article 
ADS 

Google Scholar
 

Burgio, G., Gómez, S. & Arenas, A. Triadic approximation reveals the role of interaction overlap on the spread of complex contagions on higher-order networks. Phys. Rev. Lett. 132, 077401 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos 30, 103117 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Lucas, M., Gallo, L., Ghavasieh, A., Battiston, F. & De Domenico, M. Reducibility of higher-order networks from dynamics. Nat. Commun. 17, 1551 (2026).

Article 

Google Scholar
 

Lamata-Otín, S., Malizia, F., Latora, V., Frasca, M. & Gómez-Gardeñes, J. Hyperedge overlap drives synchronizability of systems with higher-order interactions. Phys. Rev. E 111, 034302 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

LaRock, T. & Lambiotte, R. Encapsulation structure and dynamics in hypergraphs. J. Phys. Complex. 4, 045007 (2023).

Article 
ADS 

Google Scholar
 

Kim, J., Lee, D.-S. & Goh, K.-I. Contagion dynamics on hypergraphs with nested hyperedges. Phys. Rev. E 108, 034313 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Skardal, P. S., Adhikari, S. & Restrepo, J. G. Multistability in coupled oscillator systems with higher-order interactions and community structure. Chaos 33, 023140 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Adhikari, S., Restrepo, J. G. & Skardal, P. S. Synchronization of phase oscillators on complex hypergraphs. Chaos 33, 033116 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kim, J.-H. & Goh, K.-I. Higher-order components dictate higher-order contagion dynamics in hypergraphs. Phys. Rev. Lett. 132, 087401 (2024).

Article 
ADS 

Google Scholar
 

Malizia, F., Guzmán, A., Iacopini, I. & Kiss, I. Z. Disentangling the role of heterogeneity and hyperedge overlap in explosive contagion on higher-order networks. Phys. Rev. Lett. 135, 207401 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Malizia, F., Lamata-Otín, S., Frasca, M., Latora, V. & Gómez-Gardeñes, J. Hyperedge overlap drives explosive transitions in systems with higher-order interactions. Nat. Commun. 16, 555 (2025).

Article 
ADS 

Google Scholar
 

Eriksson, A., Edler, D., Rojas, A., de Domenico, M. & Rosvall, M. How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Commun. Phys. 4, 133 (2021).

Article 

Google Scholar
 

Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).

Article 
ADS 

Google Scholar
 

Ruggeri, N., Contisciani, M., Battiston, F. & De Bacco, C. Community detection in large hypergraphs. Sci. Adv. 9, eadg9159 (2023).

Article 

Google Scholar
 

Golubitsky, M. & Stewart, I. The Symmetry Perspective Vol. 200 (Birkhäuser Verlag, 2002). From equilibrium to chaos in phase space and physical space.

Ashwin, P. & Swift, J. W. The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992).

Article 
MathSciNet 
ADS 

Google Scholar
 

Bick, C., Ashwin, P. & Rodrigues, A. Chaos in generically coupled phase oscillator networks with nonpairwise interactions. Chaos 26, 094814 (2016).

Article 
MathSciNet 
ADS 

Google Scholar
 

Wiley, D. A., Strogatz, S. H. & Girvan, M. The size of the sync basin. Chaos 16, 015103 (2006).

Article 
MathSciNet 
ADS 

Google Scholar
 

Zhang, Y. & Strogatz, S. H. Basins with tentacles. Phys. Rev. Lett. 127, 194101 (2021).

Article 
ADS 

Google Scholar
 

Delabays, R., Tyloo, M. & Jacquod, P. The size of the sync basin revisited. Chaos 27, 103109 (2017).

Article 
MathSciNet 
ADS 

Google Scholar
 

Díaz-Guilera, A., Marinelli, D. & Pérez-Vicente, C. J. Exploring the interplay of excitatory and inhibitory interactions in the Kuramoto model on circle topologies. Chaos 34, 043134 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Sclosa, D. From combinatorics to geometry: the dynamics of graph gradient diffusion. Geom. Dedic. 219, 6 (2025).

Article 
MathSciNet 

Google Scholar
 

Komarov, M. & Pikovsky, A. Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling. Phys. Rev. E 92, 020901 (2015).

Article 
ADS 

Google Scholar
 

Kundu, S. & Ghosh, D. Higher-order interactions promote chimera states. Phys. Rev. E 105, L042202 (2022).

Article 
MathSciNet 
ADS 

Google Scholar
 

Bick, C., Böhle, T. & Omel’chenko, O. Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions. J. Phys. Complex. 5, 025026 (2023).

Article 

Google Scholar
 

Zhang, Y., Skardal, P. S., Battiston, F., Petri, G. & Lucas, M. Deeper but smaller: higher-order interactions increase linear stability but shrink basins. Sci. Adv. 10, ado8049 (2024).

Article 

Google Scholar
 

Bick, C. Heteroclinic switching between chimeras. Phys. Rev. E 97, 050201 (2018).

Article 
ADS 

Google Scholar
 

Bick, C. Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small populations. J. Nonlinear Sci. 29, 2571–2600 (2019).

Article 
MathSciNet 
ADS 

Google Scholar
 

Bick, C. & Lohse, A. Heteroclinic dynamics of localized frequency synchrony: stability of heteroclinic cycles and networks. J. Nonlinear Sci. 29, 2547–2570 (2019).

Article 
MathSciNet 
ADS 

Google Scholar
 

Watanabe, S. & Strogatz, S. H. Integrability of a globally coupled oscillator array. Phys. Rev. Lett. 70, 2391 (1993).

Article 
MathSciNet 
ADS 

Google Scholar
 

Watanabe, S. & Strogatz, S. H. Constants of motion for superconducting Josephson arrays. Physica D 74, 197–253 (1994).

Article 
ADS 

Google Scholar
 

Ott, E. & Antonsen, T. M. Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008).

Article 
MathSciNet 
ADS 

Google Scholar
 

Ott, E. & Antonsen, T. M. Long time evolution of phase oscillator systems. Chaos 19, 023117 (2009).

Article 
MathSciNet 
ADS 

Google Scholar
 

Pikovsky, A. & Rosenblum, M. Dynamics of heterogeneous oscillator ensembles in terms of collective variables. Physica D 240, 872–881 (2011).

Article 
MathSciNet 
ADS 

Google Scholar
 

Bick, C., Goodfellow, M., Laing, C. R. & Martens, E. A. Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J. Math. Neurosci. 10, 9 (2020).

Article 
MathSciNet 

Google Scholar
 

Gong, C. C. & Pikovsky, A. Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles. Phys. Rev. E 100, 062210 (2019).

Article 
ADS 

Google Scholar
 

Bick, C., Böhle, T. & Kuehn, C. Phase oscillator networks with nonlocal higher-order interactions: twisted states, stability, and bifurcations. SIAM J. Appl. Dyn. Syst. 22, 1590–1638 (2023).

Article 
MathSciNet 

Google Scholar
 

Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).

Article 
ADS 

Google Scholar
 

Ghosh, S. et al. Dimension reduction in higher-order contagious phenomena. Chaos 33, 053117 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3, 218 (2020).

Article 

Google Scholar
 

Skardal, P. S. & Xu, C. Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions. Chaos 32, 053120 (2022).

Article 
MathSciNet 
ADS 

Google Scholar
 

Sabhahit, N. G., Khurd, A. S. & Jalan, S. Prolonged hysteresis in the Kuramoto model with inertia and higher-order interactions. Phys. Rev. E 109, 024212 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Anwar, M. S., Sar, G. K., Perc, M. & Ghosh, D. Collective dynamics of swarmalators with higher-order interactions. Commun. Phys. 7, 59 (2024).

Article 

Google Scholar
 

Anwar, M. S., Sar, G. K., Carletti, T. & Ghosh, D. A two-dimensional swarmalator model with higher-order interactions. SIAM J. Appl. Math. 85, 1475–1499 (2025).

Article 
MathSciNet 

Google Scholar
 

Hu, Y. et al. Effect of spatial-phase drift on the synchronization of swarmalators with higher-order interactions. Commun. Phys. 8, 177 (2025).

Article 

Google Scholar
 

Chen, C., Surana, A., Bloch, M. A. & Rajapakse, I. Controllability of hypergraphs. IEEE Trans. Netw. Sci. Eng. 8, 1646–1657 (2021).

Article 
MathSciNet 

Google Scholar
 

De Lellis, P., Della Rossa, F., Lo Ludice, F. & Liuzza, D. Pinning control of linear systems on hypergraphs. Eur. J. Control 74, 100836 (2023).

Article 
MathSciNet 

Google Scholar
 

Della Rossa, F., Liuzza, D., Lo Ludice, F. & De Lellis, P. Emergence and control of synchronization in networks with directed many-body interactions. Phys. Rev. Lett. 131, 207401 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Rizzello, R. & De Lellis, P. Pinning control in networks of nonidentical systems with many-body interactions. IEEE Control Syst. Lett. 8, 1313–1318 (2024).

Article 
MathSciNet 

Google Scholar
 

Muolo, R., Gambuzza, L. V., Nakao, H. & Frasca, M. Pinning control of chimera states in systems with higher-order interactions. Nonlinear Dyn. 113, 28233–28255 (2025).

Article 

Google Scholar
 

Wang, Y. & Zhao, Y. Synchronization of directed higher-order networks via pinning control. Chaos Solitons Fractals 185, 115062 (2024).

Article 
MathSciNet 

Google Scholar
 

Li, K., Lin, Y. & Wang, J. Synchronization of multi-directed hypergraphs via adaptive pinning control. Chaos Solitons Fractals 184, 115000 (2024).

Article 
MathSciNet 

Google Scholar
 

Xia, R. & Xiang, L. Pinning control of simplicial complexes. Eur. J. Control 77, 100994 (2024).

Article 
MathSciNet 

Google Scholar
 

Moriamé, M., Lucas, M. & Carletti, T. Hamiltonian control to desynchronize Kuramoto oscillators with higher-order interactions. Phys. Rev. E 111, 044307 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Skardal, P. S., Ott, E. & Restrepo, J. G. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84, 036208 (2011).

Article 

Google Scholar
 

Xu, C., Wang, X. & Skardal, P. S. Bifurcation analysis and structural stability of simplicial oscillator populations. Phys. Rev. Res. 2, 023281 (2020).

Article 

Google Scholar
 

Xu, C. & Skardal, P. S. Spectrum of extensive multiclusters in the Kuramoto model with higher-order interactions. Phys. Rev. Res. 3, 013013 (2021).

Article 

Google Scholar
 

Skardal, P. S. & Arenas, A. Memory selection and information switching in oscillator networks with higher-order interactions. J. Phys. Complex. 2, 015003 (2020).

Article 

Google Scholar
 

Carletti, T., Fanelli, D. & Nicoletti, S. Dynamical systems on hypergraphs. J. Phys. Complex. 1, 035006 (2020).

Article 
ADS 

Google Scholar
 

de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).

Article 

Google Scholar
 

St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. & Hébert-Dufresne, L. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. Phys. Rev. E 103, 032301 (2021).

Article 
MathSciNet 
ADS 

Google Scholar
 

Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

Article 
ADS 

Google Scholar
 

Mulas, R., Kuehn, C. & Jost, J. Coupled dynamics on hypergraphs: master stability of steady states and synchronization. Phys. Rev. E 101, 062313 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nishikawa, T., Motter, A. E., Lai, Y.-C. & Hoppensteadt, F. C. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).

Article 
ADS 

Google Scholar
 

Nishikawa, T. & Motter, A. E. Maximum performance at minimum cost in network synchronization. Physica D 224, 77–89 (2006).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nishikawa, T. & Motter, A. E. Synchronization is optimal in nondiagonalizable networks. Phys. Rev. E 73, 065106 (2006).

Article 
ADS 

Google Scholar
 

Nishikawa, T. & Motter, A. E. Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions. Proc. Natl Acad. Sci. USA 107, 10342–10347 (2010).

Article 
ADS 

Google Scholar
 

Anwar, M. S., Ghosh, D. & Carletti, T. Global synchronization on time-varying higher-order structures. J. Phys. Complex. 5, 015020 (2024).

Article 

Google Scholar
 

Rajwani, P., Suman, A. & Jalan, S. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions. Chaos 33, 061102 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Pal, P. K., Anwar, M. S., Perc, M. & Ghosh, D. Global synchronization in generalized multilayer higher-order networks. Phys. Rev. Res. 6, 033003 (2024).

Article 

Google Scholar
 

Rathore, V., Suman, A. & Jalan, S. Synchronization onset for contrarians with higher-order interactions in multilayer systems. Chaos 33, 091105 (2023).

Article 
ADS 

Google Scholar
 

Anwar, M. S., Jenifer, S. N., Muruganandam, P., Ghosh, D. & Carletti, T. Synchronization in adaptive higher-order networks. Phys. Rev. E 110, 064305 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Gallo, L. et al. Synchronization induced by directed higher-order interactions. Commun. Phys. 5, 263 (2022).

Article 

Google Scholar
 

Aguiar, M., Ashwin, P., Dias, A. & Field, M. Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation. J. Nonlinear Sci. 21, 271–323 (2011).

Article 
MathSciNet 
ADS 

Google Scholar
 

Golubitsky, M., Stewart, I. & Török, A. Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dyn. Syst. 4, 78–100 (2005).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nijholt, E., Rink, B. & Sanders, J. Graph fibrations and symmetries of network dynamics. J. Differ. Equ. 261, 4861–4896 (2016).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nijholt, E., Rink, B. W. & Schwenker, S. Quiver representations and dimension reduction in dynamical systems. SIAM J. Appl. Dyn. Syst. 19, 2428–2468 (2020).

Article 
MathSciNet 

Google Scholar
 

Makse, H. A., Boldi, P., Sorrentino, F. & Stewart, I. Symmetries of living systems: symmetry fibrations and synchronization in biological networks. Preprint at https://arxiv.org/2502.18713 (2025).

Antoneli, F. & Stewart, I. Symmetry and synchrony in coupled cell networks 1: fixed-point spaces. Int. J. Bifurcat. Chaos 16, 559–577 (2006).

Article 
MathSciNet 

Google Scholar
 

Schaub, M. T. et al. Graph partitions and cluster synchronization in networks of oscillators. Chaos 26, 094821 (2016).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kamei, H. & Cock, P. J. Computation of balanced equivalence relations and their lattice for a coupled cell network. SIAM J. Appl. Dyn. Syst. 12, 352–382 (2013).

Article 
MathSciNet 

Google Scholar
 

Zhang, Y., Latora, V. & Motter, A. E. Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys. 4, 195 (2021).

Article 

Google Scholar
 

Bick, C. & von der Gracht, S. Heteroclinic dynamics in network dynamical systems with higher-order interactions. J. Complex Netw. 12, cnae009 (2024).

Article 
MathSciNet 

Google Scholar
 

Kovalenko, K. et al. Contrarians synchronize beyond the limit of pairwise interactions. Phys. Rev. Lett. 127, 258301 (2021).

Article 
MathSciNet 
ADS 

Google Scholar
 

Li, X., Ghosh, D. & Lei, Y. Chimera states in coupled pendulum with higher-order interaction. Chaos Solitons Fractals 170, 113325 (2023).

Article 
MathSciNet 

Google Scholar
 

Muolo, R., Njougouo, T., Gambuzza, L. V., Carletti, T. & Frasca, M. Phase chimera states on nonlocal hyperrings. Phys. Rev. E 109, L022201 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Wang, Z., Chen, M., Xi, X., Tian, H. & Yang, R. Multi-chimera states in a higher order network of Fitzhugh–Nagumo oscillators. Eur. Phys. J. Spec. Top. 233, 779–786 (2024).

Article 

Google Scholar
 

Djeudjo, R. T., Carletti, T., Nakao, H. & Muolo, R. Chimera states on m-directed hypergraphs. Preprint at https://arxiv.org/2506.12511 (2025).

Fenichel, N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1972).

Article 
MathSciNet 

Google Scholar
 

Nakao, H. Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57, 188–214 (2016).

Article 
ADS 

Google Scholar
 

Pietras, B. & Daffertshofer, A. Network dynamics of coupled oscillators and phase reduction techniques. Phys. Rep. 819, 1–105 (2019).

Article 
MathSciNet 
ADS 

Google Scholar
 

Mau, E. T., Omel’chenko, O. E. & Rosenblum, M. Phase reduction explains chimera shape: when multibody interaction matters. Phys. Rev. E 110, L022201 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Gengel, E., Teichmann, E., Rosenblum, M. & Pikovsky, A. High-order phase reduction for coupled oscillators. J. Phys. Complex. 2, 015005 (2020).

Article 

Google Scholar
 

Bick, C., Böhle, T. & Kuehn, C. Higher-order network interactions through phase reduction for oscillators with phase-dependent amplitude. J. Nonlinear Sci. 34, 77 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

von der Gracht, S., Nijholt, E. & Rink, B. A parametrisation method for high-order phase reduction in coupled oscillator networks. Preprint at https://arxiv.org/2306.0332 (2023).

Ashwin, P. & Rodrigues, A. Hopf normal form with sN symmetry and reduction to systems of nonlinearly coupled phase oscillators. Physica D 325, 14–24 (2016).

Article 
MathSciNet 
ADS 

Google Scholar
 

León, I., Muolo, R., Hata, S. & Nakao, H. Theory of phase reduction from hypergraphs to simplicial complexes: a general route to higher-order Kuramoto models. Physica D 482, 134858 (2025).

Article 
MathSciNet 

Google Scholar
 

Kori, H., Rusin, C. G., Kiss, I. Z. & Hudson, J. L. Synchronization engineering: theoretical framework and application to dynamical clustering. Chaos 18, 026111 (2008).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kiss, I. Z. Synchronization engineering. Curr. Opin. Chem. Eng. 21, 1–9 (2018).

Article 

Google Scholar
 

Lück, S. & Pikovsky, A. Dynamics of multi-frequency oscillator ensembles with resonant coupling. Phys. Lett. A 375, 2714–2719 (2011).

Article 
ADS 

Google Scholar
 

Swift, J. W., Strogatz, S. H. & Wiesenfeld, K. Averaging of globally coupled oscillators. Physica D 55, 239–250 (1992).

Article 
MathSciNet 
ADS 

Google Scholar
 

Sanders, J. A., Verhulst, F. & Murdock, J. Averaging Methods in Nonlinear Dynamical Systems Vol. 59 (Springer, 2007).

Ocampo-Espindola, J. L., Kiss, I. Z., Bick, C. & Wedgwood, K. C. A. Strong coupling yields abrupt synchronization transitions in coupled oscillators. Phys. Rev. Res. 6, 033328 (2024).

Article 

Google Scholar
 

Kuehn, C. & Bick, C. A universal route to explosive phenomena. Sci. Adv. 7, eabe3824 (2021).

Article 
ADS 

Google Scholar
 

Mau, E. T. K., Omel’chenko, O. E. & Rosenblum, M. Phase reduction explains chimera shape: when multibody interaction matters. Phys. Rev. E 110, L022201 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).

Article 
MathSciNet 

Google Scholar
 

De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8, 717–729 (2010).

Article 

Google Scholar
 

von der Gracht, S., Nijholt, E. & Rink, B. Hypernetworks: cluster synchronization is a higher-order effect. SIAM J. Appl. Math. 83, 2329–2353 (2023).

Article 
MathSciNet 

Google Scholar
 

Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).

Article 

Google Scholar
 

Kirkley, A., Felippe, H. & Battiston, F. Structural reducibility of hypergraphs. Phys. Rev. Lett. 135, 247401 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kadanoff, L. P. Scaling laws for Ising models near Tc. Phys. Phys. Fiz. 2, 263–272 (1966).

MathSciNet 

Google Scholar
 

Serrano, M. Á, Krioukov, D. & Boguñá, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 100, 078701 (2008).

Article 
ADS 

Google Scholar
 

García-Pérez, G., Boguñá, M. & Serrano, M. Á. Multiscale unfolding of real networks by geometric renormalization. Nat. Phys. 14, 583–589 (2018).

Article 

Google Scholar
 

Villegas, P., Gili, T., Caldarelli, G. & Gabrielli, A. Laplacian renormalization group for heterogeneous networks. Nat. Phys. 19, 445–450 (2023).

Article 

Google Scholar
 

Nurisso, M. et al. Higher-order Laplacian renormalization. Nat. Phys. 21, 661–668 (2025).

Article 

Google Scholar
 

Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).

Article 

Google Scholar
 

Wang, H., Ma, C., Chen, H.-S., Lai, Y.-C. & Zhang, H.-F. Full reconstruction of simplicial complexes from binary contagion and Ising data. Nat. Commun. 13, 3043 (2022).

Article 
ADS 

Google Scholar
 

Wang, Y. & Kleinberg, J. Supervised hypergraph reconstruction. Preprint at https://arxiv.org/2211.13343 (2022).

Wegner, A. E. & Olhede, S. C. Nonparametric inference of higher order interaction patterns in networks. Commun. Phys. 7, 258 (2024).

Article 

Google Scholar
 

Tabar, M. R. R. et al. Revealing higher-order interactions in high-dimensional complex systems: a data-driven approach. Phys. Rev. X 14, 011050 (2024).


Google Scholar
 

Li, X. et al. Higher-order Granger reservoir computing: simultaneously achieving scalable complex structures inference and accurate dynamics prediction. Nat. Commun. 15, 2506 (2024).

Article 
ADS 

Google Scholar
 

Niedostatek, M. et al. Mining higher-order triadic interactions. Nat. Commun. 16, 11613 (2025).

Article 
ADS 

Google Scholar
 

Delabays, R., De Pasquale, G., Dörfler, F. & Zhang, Y. Hypergraph reconstruction from dynamics. Nat. Commun. 16, 2691 (2025).

Article 
ADS 

Google Scholar
 

Kralemann, B., Pikovsky, A. & Rosenblum, M. Reconstructing phase dynamics of oscillator networks. Chaos 21, 025104 (2011).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kralemann, B., Pikovsky, A. & Rosenblum, M. Detecting triplet locking by triplet synchronization indices. Phys. Rev. E 87, 052904 (2013).

Article 
ADS 

Google Scholar
 

Kralemann, B., Pikovsky, A. & Rosenblum, M. Reconstructing effective phase connectivity of oscillator networks from observations. New J. Phys. 16, 085013 (2014).

Article 
ADS 

Google Scholar
 

Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).

Article 

Google Scholar
 

Lizotte, S., Young, J.-G. & Allard, A. Hypergraph reconstruction from uncertain pairwise observations. Sci. Rep. 13, 21364 (2023).

Article 
ADS 

Google Scholar
 

Varley, T. F., Pope, M., Puxeddu, M. G., Joshua, F. & Sporns, O. Partial entropy decomposition reveals higher-order information structures in human brain activity. Proc. Natl Acad. Sci. USA 120, e2300888120 (2023).

Article 

Google Scholar
 

Santoro, A., Battiston, F., Petri, G. & Amico, E. Higher-order organization of multivariate time series. Nat. Phys. 19, 221–229 (2023).


Google Scholar
 

Santoro, A., Battiston, F., Lucas, M., Petri, G. & Amico, E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat. Commun. 15, 10244 (2024).

Article 
ADS 

Google Scholar
 

Malizia, F. et al. Reconstructing higher-order interactions in coupled dynamical systems. Nat. Commun. 15, 5184 (2024).

Article 
ADS 

Google Scholar
 

Zang, Y. et al. Stepwise reconstruction of higher-order networks from dynamics. Chaos 34, 073156 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Casadiego, J., Nitzan, M., Hallerberg, S. & Timme, M. Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8, 2192 (2017).

Article 
ADS 

Google Scholar
 

Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nijholt, E., Ocampo-Espindola, J. L., Eroglu, D., Kiss, I. Z. & Pereira, T. Emergent hypernetworks in weakly coupled oscillators. Nat. Commun. 13, 4849 (2022).

Article 
ADS 

Google Scholar
 

Chen, R. T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Proc. 32nd Conference on Neural Information Processing Systems (NeurIPS, 2018).

Schaub, M. T., Benson, A. R., Horn, P., Lippner, G. & Jadbabaie, A. Random walks on simplicial complexes and the normalized Hodge 1-Laplacian. SIAM Rev. 62, 353–391 (2020).

Article 
MathSciNet 

Google Scholar
 

Sampson, C. R., Restrepo, J. G. & Porter, M. A. Oscillatory and excitable dynamics in an opinion model with group opinions. Phys. Rev. E 112, 024303 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Nurisso, M. et al. A unified framework for simplicial Kuramoto models. Chaos 34, 053118 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Millán, A. P., Torres, J. J. & Bianconi, G. Explosive higher-order Kuramoto dynamics on simplicial complexes. Phys. Rev. Lett. 124, 218301 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Carletti, T., Giambagli, L. & Bianconi, G. Global topological synchronization on simplicial and cell complexes. Phys. Rev. Lett. 130, 187401 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Arnaudon, A., Peach, R. L., Petri, G. & Expert, P. Connecting hodge and Sakaguchi–Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes. Commun. Phys. 5, 211 (2022).

Article 

Google Scholar
 

Ghorbanchian, R., Restrepo, J. G., Torres, J. J. & Bianconi, G. Higher-order simplicial synchronization of coupled topological signals. Commun. Phys. 4, 120 (2021).

Article 

Google Scholar
 

Bianconi, G. The topological Dirac equation of networks and simplicial complexes. J. Phys. Complex. 2, 035022 (2021).

Article 
ADS 

Google Scholar
 

Muolo, R., Carletti, T. & Bianconi, G. The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links. Chaos Solitons Fractals 178, 114312 (2024).

Article 
MathSciNet 

Google Scholar
 

Calmon, L., Krishnagopal, S. & Bianconi, G. Local Dirac synchronization on networks. Chaos 33, 033117 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Berner, R., Gross, T., Kuehn, C., Kurths, J. & Yanchuk, S. Adaptive dynamical networks. Phys. Rep. 1031, 1–59 (2023).

Article 
MathSciNet 
ADS 

Google Scholar
 

Kachhvah, A. D. & Jalan, S. First-order route to antiphase clustering in adaptive simplicial complexes. Phys. Rev. E 105, L062203 (2022).

Article 
MathSciNet 
ADS 

Google Scholar
 

Sharma, A., Rajwani, P. & Jalan, S. Synchronization transitions in adaptive Kuramoto–Sakaguchi oscillators with higher-order interactions. Chaos 34, 081103 (2024).

Article 
MathSciNet 
ADS 

Google Scholar
 

Li, G. J., Luo, J. & Porter, M. A. Bounded-confidence models of opinion dynamics with adaptive confidence bounds. SIAM J. Appl. Dyn. Syst. 24, 994–1041 (2025).

Article 
MathSciNet 

Google Scholar
 

Horstmeyer, L. & Kuehn, C. Adaptive voter model on simplicial complexes. Phys. Rev. E 101, 022305 (2020).

Article 
MathSciNet 
ADS 

Google Scholar
 

Golovin, A., Mölter, J. & Kuehn, C. Polyadic opinion formation: the adaptive voter model on a hypergraph. Ann. Phys. 536, 2300342 (2024).

Article 

Google Scholar
 

Schlager, D., Clauß, K. & Kuehn, C. Stability analysis of multiplayer games on adaptive simplicial complexes. Chaos 32, 053128 (2022).

Article 
MathSciNet 
ADS 

Google Scholar
 

Robiglio, T., Di Gaetano, L., Altieri, A., Petri, G. & Battiston, F. Higher-order Ising model on hypergraphs. Phys. Rev. E 112, L022301 (2025).

Article 
MathSciNet 
ADS 

Google Scholar
 

Son, G., Lee, D.-S. & Goh, K.-I. Phase transitions in the simplicial Ising model on hypergraphs. Preprint at https://arxiv.org/2411.19080 (2024).

Kiss, I. Z., Iacopini, I., Simon, P. L. & Georgiou, N. Insights from exact social contagion dynamics on networks with higher-order structures. J. Complex Netw. 11, cnad044 (2023).

Article 
MathSciNet 

Google Scholar
 

Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).

Article 
ADS 

Google Scholar
 

Gibbs, T., Levin, S. A. & Levine, J. M. Coexistence in diverse communities with higher-order interactions. Proc. Natl Acad. Sci. USA 119, e2205063119 (2022).

Article 

Google Scholar
 

Neri, M. et al. A taxonomy of neuroscientific strategies based on interaction orders. Eur. J. Neurosci. 61, e16676 (2025).

Article 

Google Scholar
 

Geli, S. M., Lynn, C. W., Kringelbach, M. L., Deco, G. & Perl, Y. S. Non-equilibrium whole-brain dynamics arise from pairwise interactions. Cell Rep. Phys. Sci. 6, 102464 (2025).

Article 

Google Scholar
 

Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).

Article 

Google Scholar
 

Majhi, S. et al. Patterns of neuronal synchrony in higher-order networks. Phys. Life Rev. 52, 144–170 (2025).

Article 
ADS 

Google Scholar
 

Santoro, A., Nurisso, M. & Petri, G. From nodes to edges: edge-based Laplacians for brain signal processing. In Proc. 33rd European Signal Processing Conference (EUSIPCO) 1084–1088 (IEEE, 2025).

Santoro, A. et al. Beyond pairwise interactions: charting higher-order models of brain function. Preprint at bioRxiv https://doi.org/10.1101/2025.06.24.661306 (2025).

Bick, C., Rink, B. & de Wolff, B. A. J. When time delays and phase lags are not the same: higher-order phase reduction unravels delay-induced synchronization in oscillator networks. Preprint at https://arxiv.org/2404.11340 (2024).