Lally, J. & MacCabe, J. H. Antipsychotic medication in schizophrenia: a review. Br. Med. Bull. 114, 169–179 (2015).

PubMed 

Google Scholar
 

Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet. 388, 86–97 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Owen, M. J., Legge, S. E., Rees, E., Walters, J. T. R. & O’Donovan, M. C. Genomic findings in schizophrenia and their implications. Mol. Psychiatry 28, 3638–3647 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614, 492–499 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rees, E. et al. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 73, 963–969 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

PubMed 

Google Scholar
 

Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49, 1167–1173 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rees, E. et al. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nat. Neurosci. 23, 179–184 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, D. et al. Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations. Nat. Genet. 55, 369–376 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022.

PubMed 
PubMed Central 

Google Scholar
 

Chen, S. et al. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat. Neurosci. 27, 1864–1879 (2024).

PubMed Central 

Google Scholar
 

Palmer, D. S. et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 54, 541–547 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Brooker, A. S. & Berkowitz, K. M. The roles of cohesins in mitosis, meiosis, and human health and disease. Methods Mol. Biol. Clifton NJ. 1170, 229–266 (2014).


Google Scholar
 

Bose, T. & Gerton, J. L. Cohesinopathies, gene expression, and chromatin organization. J. Cell Biol. 189, 201–210 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Nagasaka, K. et al. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol. Cell 83, 3049–3063.e6 (2023).

PubMed 

Google Scholar
 

Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

PubMed 

Google Scholar
 

Casa, V. et al. Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Res. 30, 515–527 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Weiss, F. D. et al. Neuronal genes deregulated in Cornelia de Lange Syndrome respond to removal and re-expression of cohesin. Nat. Commun. 12, 2919 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Howrigan, D. P. et al. Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat. Neurosci. 23, 185–193 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat. Commun. 11, 1842 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Vissing, H., Meyer, W. K.-H., Aagaard, L., Tommerup, N. & Thiesen, H.-J. Repression of transcriptional activity by heterologous KRAB domains present in zinc finger proteins. FEBS Lett. 369, 153–157 (1995).

PubMed 

Google Scholar
 

Urrutia, R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231 (2003).

PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y. et al. Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, e922426 (2020).


Google Scholar
 

Kathuria, A., Lopez-Lengowski, K., Watmuff, B. & Karmacharya, R. Morphological and transcriptomic analyses of stem cell-derived cortical neurons reveal mechanisms underlying synaptic dysfunction in schizophrenia. Genome Med. 15, 58 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Wang, S. et al. SETD1A mediated H3K4 methylation and its role in neurodevelopmental and neuropsychiatric disorders. Front. Mol. Neurosci. 14, 772000 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Silva, D. B. et al. Haploinsufficiency underlies the neurodevelopmental consequences of SLC6A1 variants. Am. J. Hum. Genet. 111, 1222–1238 (2024).

PubMed 
PubMed Central 

Google Scholar
 

O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Hall, L. S. et al. Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Mol. Psychiatry 26, 2082–2088 (2021).

PubMed 

Google Scholar
 

Killian, R. L., Flippin, J. D., Herrera, C. M., Almenar-Queralt, A. & Goldstein, L. S. B. Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism. PLoS One. 7, e29755 (2012).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Rees, E. et al. Analysis of copy number variations at 15 schizophrenia-associated loci. Br. J. Psychiatry 204, 108–114 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Rees, E. et al. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat. Commun. 12, 5353 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lehalle, D. et al. STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J. Med. Genet. 54, 479–488 (2017).

PubMed 

Google Scholar
 

Yuan, B. et al. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet. Med. 21, 663–675 (2019).

PubMed 

Google Scholar
 

Di Muro, E. et al. Novel STAG1 frameshift mutation in a patient affected by a syndromic form of neurodevelopmental disorder. Genes. 12, 1116 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Ahmed, M. Y. et al. Loss of PCLO function underlies pontocerebellar hypoplasia type III. Neurology 84, 1745–1750 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Ito, D. & Suzuki, N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain 132, 8–15 (2009).

PubMed 

Google Scholar
 

Singh, T. et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat. Neurosci. 19, 571–577 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Diagnostic and Statistical Manual of Mental Disorders. 4th ed., American Psychiatric Association (1994). https://psycnet.apa.org/record/1994-97698-000

World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. https://apps.who.int/iris/handle/10665/37958 (1992).

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

Lynham, A. J. et al. DRAGON-Data: a platform and protocol for integrating genomic and phenotypic data across large psychiatric cohorts. BJPsych. Open. 9, e32 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1088–1093 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

PubMed 
PubMed Central 

Google Scholar
 

McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. Oxf. Engl. 25, 1754–1760 (2009).


Google Scholar
 

Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Chick, S. L. Analysis of exome sequencing data implicates rare coding variants in STAG1 and ZNF136 in schizophrenia. https://doi.org/10.5281/zenodo.14865530 (2025).

Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

PubMed 
PubMed Central 

Google Scholar