Jablensky A. Schizophrenia in DSM-5: assets and liabilities. Schizophr Res. 2013;150(1):36–7. https://doi.org/10.1016/j.schres.2013.07.037.
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune system abnormalities in schizophrenia: an integrative view and translational perspectives. Front Psychiatry. 2022;13:880568. https://doi.org/10.3389/fpsyt.2022.880568.
Dudeck L, Nussbaumer M, Nickl-Jockschat T, Guest PC, Dobrowolny H, Meyer-Lotz G, Zhao Z, Jacobs R, Schiltz K, Fernandes BS, Steiner J. Differences in blood leukocyte subpopulations in schizophrenia: A systematic review and Meta-Analysis. JAMA Psychiatry. 2025;82(5):492–504. https://doi.org/10.1001/jamapsychiatry.2024.4941.
Clausen M, Christensen RHB, da Re M, Benros ME. Immune cell alterations in psychotic disorders: A comprehensive systematic review and Meta-Analysis. Biol Psychiatry. 2024;96(5):331–41. https://doi.org/10.1016/j.biopsych.2023.11.029.
Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci. 2019;26(1):90. https://doi.org/10.1186/s12929-019-0584-z.
Maouia A, Rebetz J, Kapur R, Semple JW. The immune nature of platelets revisited. Transfus Med Rev. 2020;34(4):209–20. https://doi.org/10.1016/j.tmrv.2020.09.005.
Sansanayudh N, Anothaisintawee T, Muntham D, McEvoy M, Attia J, Thakkinstian A. Mean platelet volume and coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2014;175(3):433–40. https://doi.org/10.1016/j.ijcard.2014.06.028.
Hartmann LT, Alegretti AP, Machado ABMP, Martins EF, da Silva Chakr RM, Gasparin AA, Monticielo OA. Assessment of mean platelet volume in patients with systemic lupus erythematosus. Open Rheumatol J. 2018;12:129–38. https://doi.org/10.2174/1874312901812010129.
Asor E, Ben-Shachar D, Platelets. A possible glance into brain biological processes in schizophrenia. World J Psychiat. 2012;2(6):124–33. https://doi.org/10.5498/wjp.v2.i6.124.
Jarari AM, Peela JR, Zakoko A, Hawda S, Abd El Rasoul H, Peela AST, Addagarla S, Madompoyil B. The role of antipsychotic medications on metabolic and hematological parameters. Cureus. 2025;17(4):e82293. https://doi.org/10.7759/cureus.82293.
Chen Z, Wang J, Carru C, Sedda S, Nivoli AM, Li Z. Meta-analysis of peripheral mean platelet volume in patients with mental disorders: comparisons in depression, anxiety, bipolar disorder, and schizophrenia. Brain Behav. 2023;13(11):e3240. https://doi.org/10.1002/brb3.3240.
Almış BH, Eğilmez OB. Platelet parameters in First-Episode patients with schizophrenia and bipolar disorder. Psychiat Clin Psychopharmacol. 2021;31(3):339–43. https://doi.org/10.5152/pcp.2021.21695.
Zhang Y, Zheng Y, Ni P, Liang S, Li X, Yu H, Wei W, Qi X, Yu X, Xue R, Zhao L, Deng W, Wang Q, Guo W, Li T. New role of platelets in schizophrenia: predicting drug response. Gen Psychiat. 2024;37(2):e101347. https://doi.org/10.1136/gpsych-2023-101347.
Cabello-Rangel H, Basurto-Morales M, Botello-Aceves E, Pazarán-Galicia O. Mean platelet volume, platelet count, and neutrophil/lymphocyte ratio in drug-naïve patients with schizophrenia: a cross-sectional study. Front Psychiat. 2023;14:1150235. https://doi.org/10.3389/fpsyt.2023.1150235.
Ali E, Embaby A, Ibrahim D. Mean platelet volumen, red cell distribution width, and lymphocyte ratios as surrogate predictors of subclinical inflammation in schizophrenia: A cross-sectional study. EuroMediterranean Biomed J. 2022;17(39):181–5.
Johnson AD. The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost. 2011;9(Suppl 1):246–57. https://doi.org/10.1111/j.1538-7836.2011.04359.x.
O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers H, D’Agostino RA, Levy D, Tofler GH. Framingham heart study. Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation. 2001;103(25):3051–6. https://doi.org/10.1161/01.cir.103.25.3051.
Schick UM, Jain D, Hodonsky CJ, Morrison JV, Davis JP, Brown L, Sofer T, Conomos MP, Schurmann C, McHugh CP, Nelson SC, Vadlamudi S, Stilp A, Plantinga A, Baier L, Bien SA, Gogarten SM, Laurie CA, Taylor KD, Liu Y, Reiner AP. Genome-wide association study of platelet count identifies Ancestry-Specific loci in hispanic/latino Americans. Am J Hum Genet. 2016;98(2):229–42. https://doi.org/10.1016/j.ajhg.2015.12.003.
Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K. Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167(5):1415–29. https://doi.org/10.1016/j.cell.2016.10.042.
Eicher JD, Chami N, Kacprowski T, Nomura A, Chen MH, Yanek LR, Tajuddin SM, Schick UM, Slater AJ, Pankratz N, Polfus L, Schurmann C, Giri A, Brody JA, Lange LA, Manichaikul A, Hill WD, Pazoki R, Elliot P, Evangelou E. Johnson AD. Platelet-Related variants identified by exomechip Meta-analysis in 157,293 individuals. Am J Hum Genet. 2016;99(1):40–55. https://doi.org/10.1016/j.ajhg.2016.05.005.
Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH, Labrune Y, Lopez LM, Mägi R, Meacham S, Okada Y, Pirastu N, Sorice R, Teumer A, Voss K, Zhang W, Ramirez-Solis R. Soranzo N. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8. https://doi.org/10.1038/nature10659.
Meisinger C, Prokisch H, Gieger C, Soranzo N, Mehta D, Rosskopf D, Lichtner P, Klopp N, Stephens J, Watkins NA, Deloukas P, Greinacher A, Koenig W, Nauck M, Rimmbach C, Völzke H, Peters A, Illig T, Ouwehand WH, Meitinger T. Döring A. A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet. 2009;84(1):66–71. https://doi.org/10.1016/j.ajhg.2008.11.015.
Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS. Gieger C. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the haemgen consortium. Nat Genet. 2009;41(11):1182–90. https://doi.org/10.1038/ng.467.
Soranzo N, Rendon A, Gieger C, Jones CI, Watkins NA, Menzel S, Döring A, Stephens J, Prokisch H, Erber W, Potter SC, Bray SL, Burns P, Jolley J, Falchi M, Kühnel B,Erdmann J, Schunkert H, Samani NJ, Illig T, Ouwehand WH. A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood. 2009;113(16):3831–37. https://doi.org/10.1182/blood-2008-10-184234.
Lin JR, Cai Y, Zhang Q, Zhang W, Nogales-Cadenas R, Zhang ZD. Integrated Post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics. 2016;204(4):1587–600. https://doi.org/10.1534/genetics.116.187195.
Bocchio Chiavetto L, Boin F, Zanardini R, Popoli M, Michelato A, Bignotti S, Tura GB, Gennarelli M. Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biol Psychiat. 2002;51(6):480–4. https://doi.org/10.1016/s0006-3223(01)01324-5.
Qin H, Zhang L, Xu G, Pan X. Lack of association between TNFα rs1800629 polymorphism and schizophrenia risk: a meta-analysis. Psychiatry Res. 2013;209(3):314–9. https://doi.org/10.1016/j.psychres.2013.01.019.
He S, Zhang L, Yu S, Yu W, Yu Y, Huang J, Li H. Association between tumor necrosis factor-Alpha (TNF-a) polymorphisms and schizophrenia: an updated meta-analysis. Int J Psychiatry Clin Pract. 2022;26(3):294–302. https://doi.org/10.1080/13651501.2021.2009879.
Kang N, Shin W, Jung S, Bang M, Lee SH. The effect of TNF-alpha rs1800629 polymorphism on white matter structures and memory function in patients with schizophrenia: A pilot study. Psychiatry Investig. 2022;19(12):1027–36. https://doi.org/10.30773/pi.2021.0326.
Alfimova MV, Korovaitseva GI, Gabaeva MV, Plakunova VV, Lezheiko TV, Golimbet VE. Genetic polymorphism of cytokines IL-1β, IL-4 and TNF-α as a factor modifying the impact of childhood adversity on schizophrenia symptoms. Zh Nevrol Psikhiatr Im SS Korsakova. 2022;122(9):110–7. https://doi.org/10.17116/jnevro2022122091110.
Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Zaragoza-Hoyo JU, Ordoñez-Martínez B, Escamilla-Orozco RI, Gómez-González B. Toll-Like receptor (TLR) 1, 2, and 6 gene polymorphisms support evidence of innate immune factors in schizophrenia. Neuropsychiat Dis Treat. 2023;19:2353–61. https://doi.org/10.2147/NDT.S420952.
Mikhalitskaya EV, Vyalova NM, Ermakov EA, Levchuk LA, Simutkin GG, Bokhan NA, Ivanova SA. Association of single nucleotide polymorphisms of cytokine genes with depression, schizophrenia and bipolar disorder. Genes. 2023;14(7):1460. https://doi.org/10.3390/genes14071460.
González-Castro TB, Alfonso Tovilla-Zárate C, Esther Juárez-Rojop I, Hernández-Díaz Y, Lilia López-Narváez M, Felicita Ortiz-Ojeda R. The association of cytokines genes (IL-6 and IL-10) with the susceptibility to schizophrenia: A systematic review and meta-analysis. Brain Res. 2024;1822:148667. https://doi.org/10.1016/j.brainres.2023.148667.
Dastjerdi G, Fallahpour B, Dastgheib SA, Shahbazi A, Tafti AG, Bahrami M, Masoudi A, Shiri A, Nematzadeh F, Neamatzadeh H. Large-Scale Meta-Analysis of TNF-α rs1800629 polymorphism in schizophrenia: evidence from 7,624 cases and 8,933 controls. Medeni Med J. 2025;40(2):80–92. https://doi.org/10.4274/MMJ.galenos.2025.72273.
Orbe EB, Benros ME. Immunological biomarkers as predictors of treatment response in psychotic disorders. J Pers Med. 2023;13(9):1382. https://doi.org/10.3390/jpm13091382.
García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina Camacho L, Rodríguez-Jiménez R, Sáiz PA, Castro C, Lafuente A, Santabárbara J, González-Pinto A, Parellada M, Rubio G, García-Portilla MP, Micó JA, Bernardo M, Leza JC. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40(2):376–87. https://doi.org/10.1093/schbul/sbt001.
Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatr. 2016;21(12):1696–709. https://doi.org/10.1038/mp.2016.3.
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173(4):666–80. https://doi.org/10.1111/bph.13364.
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry. 2024;129:110876. https://doi.org/10.1016/j.pnpbp.2023.110876.
Sotelo-Ramírez CE, Valdés-Tovar M, Zaragoza-Hoyos JU, Ortiz-López L, Argueta J, Rosel-Vales M, Miranda-Labra RU, Camarena B. Molecular and functional analysis of TLR 1, 2 and 6 in peripheral blood monocytes of patients with schizophrenia: A pilot study. Int J Mol Sci. 2025;26(3):926. https://doi.org/10.3390/ijms26030926.
Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics. 2006;2(5):318–28. https://doi.org/10.1186/1479-7364-2-5-318.
Khandaker GM, Dantzer R, Jones PB. Immunopsychiatry: important facts. Psychol Med. 2017;47(13):2229–37. https://doi.org/10.1017/S0033291717000745.
Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93. https://doi.org/10.1016/j.neubiorev.2013.11.006.
Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, Hatzimanolis A, Goes FS, Nestadt G, Mulle J, Coneely K, Hopkins M, Ruczinski I, Yolken R, Pulver AE. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS ONE. 2015;10(3):e0116696. https://doi.org/10.1371/journal.pone.0116696.
Butkiewicz AM, Kemona H, Dymicka-Piekarska V, Matowicka-Karna J, Radziwon P, Lipska A. Platelet count, mean platelet volume and thrombocytopoietic indices in healthy women and men. Thromb Res. 2006;118(2):199–204. https://doi.org/10.1016/j.thromres.2005.06.021.
Ittermann T, Fei MA, Petersmann A, Radke D, Greinacher A, Völzke H, Thiele T. Mean platelet volume is more important than age for defining reference intervals of platelet counts. PLoS ONE. 2019;14(3):e0213658. https://doi.org/10.1371/journal.pone.0213658.
Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010;122:38–42. https://doi.org/10.1016/j.schres.2010.07.001.
International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52. https://doi.org/10.1038/nature08185.
Özdin S, Sarisoy G, Böke Ö. A comparison of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratios in schizophrenia and bipolar disorder patients – a retrospective file review. Nord J Psychiatry. 2017;71(7):509–12. https://doi.org/10.1080/08039488.2017.1340517.
García-Bueno B, Gassó P, MacDowell KS, Callado LF, Mas S, Bernardo M, Lafuente A, Meana JJ, Leza JC. Evidence of activation of the Toll-like receptor-4 Proinflammatory pathway in patients with schizophrenia. J Psychiat Neurosci. 2016;41(3):E46–55. https://doi.org/10.1503/jpn.150195.
Kozłowska E, Agier J, Wysokiński A, Łucka A, Sobierajska K, Brzezińska-Błaszczyk E. The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res. 2019;272:540–50. https://doi.org/10.1016/j.psychres.2018.12.138.
Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev RNA. 2018;9(4):e1474. https://doi.org/10.1002/wrna.1474.
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. https://doi.org/10.1101/gr.229102.
Orhan F, Schwieler L, Fatouros-Bergman H, Malmqvist A, Cervenka S, Collste K, Flyckt L, Farde L, Sellgren CM, Piehl F, Karolinska Schizophrenia Project (KaSP) Consortium, Engberg G, Erhardt S. Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis. Acta Psychiat Scand. 2018;138(5):432–40. https://doi.org/10.1111/acps.12944.
Müller N, Wagner JK, Krause D, Weidinger E, Wildenauer A, Obermeier M, Dehning S, Gruber R, Schwarz MJ. Impaired monocyte activation in schizophrenia. Psychiatry Res. 2012;198(3):341–6. https://doi.org/10.1016/j.psychres.2011.12.049.
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94. https://doi.org/10.1038/nn1997.
Munn NA. Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses. 2000;54(2):198–202. https://doi.org/10.1054/mehy.1999.0018.
Monji A, Kato T, Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63(3):257–65. https://doi.org/10.1111/j.1440-1819.2009.01945.x.
Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709. https://doi.org/10.1038/mp.2016.3.
Fond G, Lançon C, Korchia T, Auquier P, Boyer L. The role of inflammation in the treatment of schizophrenia. Front Psychiatry. 2020;11:160. https://doi.org/10.3389/fpsyt.2020.00160.
Mostaid MS, Pantelis C, Everall IP, Bousman CA. Decreased peripheral TNF alpha (TNF-α) mRNA expression in patients with treatment-resistant schizophrenia. Schizophr Res. 2018;202:387–8. https://doi.org/10.1016/j.schres.2018.04.032.
Zhu S, Zhao L, Fan Y, Lv Q, Wu K, Lang X, Li Z, Yi Z, Geng D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology. 2020;114:104595. https://doi.org/10.1016/j.psyneuen.2020.104595.
Peng S, Liang C, Deng S, Fu Y. Study on the clinical correlation between the expression of serum TNF-α and iNOS as well as cognitive impairment and disease burden in patients with schizophrenia. Pak J Med Sci. 2022;38(7):1838–43. https://doi.org/10.12669/pjms.38.7.5326.
Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, Oliva S, Aloi M, Stronati L. Transcription factor ZNF281: A novel player in intestinal inflammation and fibrosis. Front Immunol. 2018;9:2907. https://doi.org/10.3389/fimmu.2018.02907.
Pieraccioli M, Nicolai S, Pitolli C, Agostini M, Antonov A, Malewicz M, Knight RA, Raschellà G, Melino G. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci U S A. 2018;115(28):7356–61. https://doi.org/10.1073/pnas.1801435115.
Zhen J, Ke Y, Pan J, Zhou M, Zeng H, Song G, Yu Z, Fu B, Liu Y, Huang D, Wu H. ZNF320 is a hypomethylated prognostic biomarker involved in immune infiltration of hepatocellular carcinoma and associated with cell cycle. Aging. 2022;14(20):8411–36. https://doi.org/10.18632/aging.20435.
Chu T, Hu S, Qi J, Li X, Zhang X, Tang Y, Yang M, Xu Y, Ruan CG, Han Y, Wu DP. Bifunctional effect of the inflammatory cytokine tumor necrosis factor α on megakaryopoiesis and platelet production. J Thromb Haemost. 2022;20(12):2998–3010. https://doi.org/10.1111/jth.15891.
Srinivas L, Vellichirammal NN, Alex AM, Nair C, Nair IV, Banerjee M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J Neuroinflammation. 2016;13(1):105. https://doi.org/10.1186/s12974-016-0.