Jablensky A. Schizophrenia in DSM-5: assets and liabilities. Schizophr Res. 2013;150(1):36–7. https://doi.org/10.1016/j.schres.2013.07.037.

Article 
PubMed 

Google Scholar
 

Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune system abnormalities in schizophrenia: an integrative view and translational perspectives. Front Psychiatry. 2022;13:880568. https://doi.org/10.3389/fpsyt.2022.880568.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dudeck L, Nussbaumer M, Nickl-Jockschat T, Guest PC, Dobrowolny H, Meyer-Lotz G, Zhao Z, Jacobs R, Schiltz K, Fernandes BS, Steiner J. Differences in blood leukocyte subpopulations in schizophrenia: A systematic review and Meta-Analysis. JAMA Psychiatry. 2025;82(5):492–504. https://doi.org/10.1001/jamapsychiatry.2024.4941.

Article 
PubMed 

Google Scholar
 

Clausen M, Christensen RHB, da Re M, Benros ME. Immune cell alterations in psychotic disorders: A comprehensive systematic review and Meta-Analysis. Biol Psychiatry. 2024;96(5):331–41. https://doi.org/10.1016/j.biopsych.2023.11.029.

Article 
CAS 
PubMed 

Google Scholar
 

Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci. 2019;26(1):90. https://doi.org/10.1186/s12929-019-0584-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maouia A, Rebetz J, Kapur R, Semple JW. The immune nature of platelets revisited. Transfus Med Rev. 2020;34(4):209–20. https://doi.org/10.1016/j.tmrv.2020.09.005.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sansanayudh N, Anothaisintawee T, Muntham D, McEvoy M, Attia J, Thakkinstian A. Mean platelet volume and coronary artery disease: a systematic review and meta-analysis. Int J Cardiol. 2014;175(3):433–40. https://doi.org/10.1016/j.ijcard.2014.06.028.

Article 
PubMed 

Google Scholar
 

Hartmann LT, Alegretti AP, Machado ABMP, Martins EF, da Silva Chakr RM, Gasparin AA, Monticielo OA. Assessment of mean platelet volume in patients with systemic lupus erythematosus. Open Rheumatol J. 2018;12:129–38. https://doi.org/10.2174/1874312901812010129.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Asor E, Ben-Shachar D, Platelets. A possible glance into brain biological processes in schizophrenia. World J Psychiat. 2012;2(6):124–33. https://doi.org/10.5498/wjp.v2.i6.124.

Article 

Google Scholar
 

Jarari AM, Peela JR, Zakoko A, Hawda S, Abd El Rasoul H, Peela AST, Addagarla S, Madompoyil B. The role of antipsychotic medications on metabolic and hematological parameters. Cureus. 2025;17(4):e82293. https://doi.org/10.7759/cureus.82293.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chen Z, Wang J, Carru C, Sedda S, Nivoli AM, Li Z. Meta-analysis of peripheral mean platelet volume in patients with mental disorders: comparisons in depression, anxiety, bipolar disorder, and schizophrenia. Brain Behav. 2023;13(11):e3240. https://doi.org/10.1002/brb3.3240.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Almış BH, Eğilmez OB. Platelet parameters in First-Episode patients with schizophrenia and bipolar disorder. Psychiat Clin Psychopharmacol. 2021;31(3):339–43. https://doi.org/10.5152/pcp.2021.21695.

Article 

Google Scholar
 

Zhang Y, Zheng Y, Ni P, Liang S, Li X, Yu H, Wei W, Qi X, Yu X, Xue R, Zhao L, Deng W, Wang Q, Guo W, Li T. New role of platelets in schizophrenia: predicting drug response. Gen Psychiat. 2024;37(2):e101347. https://doi.org/10.1136/gpsych-2023-101347.

Article 
CAS 

Google Scholar
 

Cabello-Rangel H, Basurto-Morales M, Botello-Aceves E, Pazarán-Galicia O. Mean platelet volume, platelet count, and neutrophil/lymphocyte ratio in drug-naïve patients with schizophrenia: a cross-sectional study. Front Psychiat. 2023;14:1150235. https://doi.org/10.3389/fpsyt.2023.1150235.

Article 

Google Scholar
 

Ali E, Embaby A, Ibrahim D. Mean platelet volumen, red cell distribution width, and lymphocyte ratios as surrogate predictors of subclinical inflammation in schizophrenia: A cross-sectional study. EuroMediterranean Biomed J. 2022;17(39):181–5.


Google Scholar
 

Johnson AD. The genetics of common variation affecting platelet development, function and pharmaceutical targeting. J Thromb Haemost. 2011;9(Suppl 1):246–57. https://doi.org/10.1111/j.1538-7836.2011.04359.x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers H, D’Agostino RA, Levy D, Tofler GH. Framingham heart study. Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation. 2001;103(25):3051–6. https://doi.org/10.1161/01.cir.103.25.3051.

Article 
PubMed 

Google Scholar
 

Schick UM, Jain D, Hodonsky CJ, Morrison JV, Davis JP, Brown L, Sofer T, Conomos MP, Schurmann C, McHugh CP, Nelson SC, Vadlamudi S, Stilp A, Plantinga A, Baier L, Bien SA, Gogarten SM, Laurie CA, Taylor KD, Liu Y, Reiner AP. Genome-wide association study of platelet count identifies Ancestry-Specific loci in hispanic/latino Americans. Am J Hum Genet. 2016;98(2):229–42. https://doi.org/10.1016/j.ajhg.2015.12.003.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K. Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167(5):1415–29. https://doi.org/10.1016/j.cell.2016.10.042.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eicher JD, Chami N, Kacprowski T, Nomura A, Chen MH, Yanek LR, Tajuddin SM, Schick UM, Slater AJ, Pankratz N, Polfus L, Schurmann C, Giri A, Brody JA, Lange LA, Manichaikul A, Hill WD, Pazoki R, Elliot P, Evangelou E. Johnson AD. Platelet-Related variants identified by exomechip Meta-analysis in 157,293 individuals. Am J Hum Genet. 2016;99(1):40–55. https://doi.org/10.1016/j.ajhg.2016.05.005.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gieger C, Radhakrishnan A, Cvejic A, Tang W, Porcu E, Pistis G, Serbanovic-Canic J, Elling U, Goodall AH, Labrune Y, Lopez LM, Mägi R, Meacham S, Okada Y, Pirastu N, Sorice R, Teumer A, Voss K, Zhang W, Ramirez-Solis R. Soranzo N. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8. https://doi.org/10.1038/nature10659.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Meisinger C, Prokisch H, Gieger C, Soranzo N, Mehta D, Rosskopf D, Lichtner P, Klopp N, Stephens J, Watkins NA, Deloukas P, Greinacher A, Koenig W, Nauck M, Rimmbach C, Völzke H, Peters A, Illig T, Ouwehand WH, Meitinger T. Döring A. A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet. 2009;84(1):66–71. https://doi.org/10.1016/j.ajhg.2008.11.015.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soranzo N, Spector TD, Mangino M, Kühnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS. Gieger C. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the haemgen consortium. Nat Genet. 2009;41(11):1182–90. https://doi.org/10.1038/ng.467.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Soranzo N, Rendon A, Gieger C, Jones CI, Watkins NA, Menzel S, Döring A, Stephens J, Prokisch H, Erber W, Potter SC, Bray SL, Burns P, Jolley J, Falchi M, Kühnel B,Erdmann J, Schunkert H, Samani NJ, Illig T, Ouwehand WH. A novel variant on chromosome 7q22.3 associated with mean platelet volume, counts, and function. Blood. 2009;113(16):3831–37. https://doi.org/10.1182/blood-2008-10-184234.

Lin JR, Cai Y, Zhang Q, Zhang W, Nogales-Cadenas R, Zhang ZD. Integrated Post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics. 2016;204(4):1587–600. https://doi.org/10.1534/genetics.116.187195.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bocchio Chiavetto L, Boin F, Zanardini R, Popoli M, Michelato A, Bignotti S, Tura GB, Gennarelli M. Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biol Psychiat. 2002;51(6):480–4. https://doi.org/10.1016/s0006-3223(01)01324-5.

Article 
PubMed 

Google Scholar
 

Qin H, Zhang L, Xu G, Pan X. Lack of association between TNFα rs1800629 polymorphism and schizophrenia risk: a meta-analysis. Psychiatry Res. 2013;209(3):314–9. https://doi.org/10.1016/j.psychres.2013.01.019.

Article 
CAS 
PubMed 

Google Scholar
 

He S, Zhang L, Yu S, Yu W, Yu Y, Huang J, Li H. Association between tumor necrosis factor-Alpha (TNF-a) polymorphisms and schizophrenia: an updated meta-analysis. Int J Psychiatry Clin Pract. 2022;26(3):294–302. https://doi.org/10.1080/13651501.2021.2009879.

Article 
CAS 
PubMed 

Google Scholar
 

Kang N, Shin W, Jung S, Bang M, Lee SH. The effect of TNF-alpha rs1800629 polymorphism on white matter structures and memory function in patients with schizophrenia: A pilot study. Psychiatry Investig. 2022;19(12):1027–36. https://doi.org/10.30773/pi.2021.0326.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alfimova MV, Korovaitseva GI, Gabaeva MV, Plakunova VV, Lezheiko TV, Golimbet VE. Genetic polymorphism of cytokines IL-1β, IL-4 and TNF-α as a factor modifying the impact of childhood adversity on schizophrenia symptoms. Zh Nevrol Psikhiatr Im SS Korsakova. 2022;122(9):110–7. https://doi.org/10.17116/jnevro2022122091110.

Article 
CAS 

Google Scholar
 

Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Zaragoza-Hoyo JU, Ordoñez-Martínez B, Escamilla-Orozco RI, Gómez-González B. Toll-Like receptor (TLR) 1, 2, and 6 gene polymorphisms support evidence of innate immune factors in schizophrenia. Neuropsychiat Dis Treat. 2023;19:2353–61. https://doi.org/10.2147/NDT.S420952.

Article 

Google Scholar
 

Mikhalitskaya EV, Vyalova NM, Ermakov EA, Levchuk LA, Simutkin GG, Bokhan NA, Ivanova SA. Association of single nucleotide polymorphisms of cytokine genes with depression, schizophrenia and bipolar disorder. Genes. 2023;14(7):1460. https://doi.org/10.3390/genes14071460.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

González-Castro TB, Alfonso Tovilla-Zárate C, Esther Juárez-Rojop I, Hernández-Díaz Y, Lilia López-Narváez M, Felicita Ortiz-Ojeda R. The association of cytokines genes (IL-6 and IL-10) with the susceptibility to schizophrenia: A systematic review and meta-analysis. Brain Res. 2024;1822:148667. https://doi.org/10.1016/j.brainres.2023.148667.

Article 
CAS 

Google Scholar
 

Dastjerdi G, Fallahpour B, Dastgheib SA, Shahbazi A, Tafti AG, Bahrami M, Masoudi A, Shiri A, Nematzadeh F, Neamatzadeh H. Large-Scale Meta-Analysis of TNF-α rs1800629 polymorphism in schizophrenia: evidence from 7,624 cases and 8,933 controls. Medeni Med J. 2025;40(2):80–92. https://doi.org/10.4274/MMJ.galenos.2025.72273.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Orbe EB, Benros ME. Immunological biomarkers as predictors of treatment response in psychotic disorders. J Pers Med. 2023;13(9):1382. https://doi.org/10.3390/jpm13091382.

Article 
PubMed 
PubMed Central 

Google Scholar
 

García-Bueno B, Bioque M, Mac-Dowell KS, Barcones MF, Martínez-Cengotitabengoa M, Pina Camacho L, Rodríguez-Jiménez R, Sáiz PA, Castro C, Lafuente A, Santabárbara J, González-Pinto A, Parellada M, Rubio G, García-Portilla MP, Micó JA, Bernardo M, Leza JC. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr Bull. 2014;40(2):376–87. https://doi.org/10.1093/schbul/sbt001.

Article 
PubMed 

Google Scholar
 

Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatr. 2016;21(12):1696–709. https://doi.org/10.1038/mp.2016.3.

Article 
CAS 

Google Scholar
 

Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173(4):666–80. https://doi.org/10.1111/bph.13364.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry. 2024;129:110876. https://doi.org/10.1016/j.pnpbp.2023.110876.

Article 
CAS 
PubMed 

Google Scholar
 

Sotelo-Ramírez CE, Valdés-Tovar M, Zaragoza-Hoyos JU, Ortiz-López L, Argueta J, Rosel-Vales M, Miranda-Labra RU, Camarena B. Molecular and functional analysis of TLR 1, 2 and 6 in peripheral blood monocytes of patients with schizophrenia: A pilot study. Int J Mol Sci. 2025;26(3):926. https://doi.org/10.3390/ijms26030926.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics. 2006;2(5):318–28. https://doi.org/10.1186/1479-7364-2-5-318.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khandaker GM, Dantzer R, Jones PB. Immunopsychiatry: important facts. Psychol Med. 2017;47(13):2229–37. https://doi.org/10.1017/S0033291717000745.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93. https://doi.org/10.1016/j.neubiorev.2013.11.006.

Article 
PubMed 

Google Scholar
 

Avramopoulos D, Pearce BD, McGrath J, Wolyniec P, Wang R, Eckart N, Hatzimanolis A, Goes FS, Nestadt G, Mulle J, Coneely K, Hopkins M, Ruczinski I, Yolken R, Pulver AE. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation. PLoS ONE. 2015;10(3):e0116696. https://doi.org/10.1371/journal.pone.0116696.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Butkiewicz AM, Kemona H, Dymicka-Piekarska V, Matowicka-Karna J, Radziwon P, Lipska A. Platelet count, mean platelet volume and thrombocytopoietic indices in healthy women and men. Thromb Res. 2006;118(2):199–204. https://doi.org/10.1016/j.thromres.2005.06.021.

Article 
CAS 
PubMed 

Google Scholar
 

Ittermann T, Fei MA, Petersmann A, Radke D, Greinacher A, Völzke H, Thiele T. Mean platelet volume is more important than age for defining reference intervals of platelet counts. PLoS ONE. 2019;14(3):e0213658. https://doi.org/10.1371/journal.pone.0213658.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jia P, Wang L, Meltzer HY, Zhao Z. Common variants conferring risk of schizophrenia: a pathway analysis of GWAS data. Schizophr Res. 2010;122:38–42. https://doi.org/10.1016/j.schres.2010.07.001.

Article 
PubMed 
PubMed Central 

Google Scholar
 

International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–52. https://doi.org/10.1038/nature08185.

Article 
CAS 
PubMed Central 

Google Scholar
 

Özdin S, Sarisoy G, Böke Ö. A comparison of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratios in schizophrenia and bipolar disorder patients – a retrospective file review. Nord J Psychiatry. 2017;71(7):509–12. https://doi.org/10.1080/08039488.2017.1340517.

Article 
PubMed 

Google Scholar
 

García-Bueno B, Gassó P, MacDowell KS, Callado LF, Mas S, Bernardo M, Lafuente A, Meana JJ, Leza JC. Evidence of activation of the Toll-like receptor-4 Proinflammatory pathway in patients with schizophrenia. J Psychiat Neurosci. 2016;41(3):E46–55. https://doi.org/10.1503/jpn.150195.

Article 

Google Scholar
 

Kozłowska E, Agier J, Wysokiński A, Łucka A, Sobierajska K, Brzezińska-Błaszczyk E. The expression of toll-like receptors in peripheral blood mononuclear cells is altered in schizophrenia. Psychiatry Res. 2019;272:540–50. https://doi.org/10.1016/j.psychres.2018.12.138.

Article 
CAS 
PubMed 

Google Scholar
 

Steri M, Idda ML, Whalen MB, Orrù V. Genetic variants in mRNA untranslated regions. Wiley Interdiscip Rev RNA. 2018;9(4):e1474. https://doi.org/10.1002/wrna.1474.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006. https://doi.org/10.1101/gr.229102.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Orhan F, Schwieler L, Fatouros-Bergman H, Malmqvist A, Cervenka S, Collste K, Flyckt L, Farde L, Sellgren CM, Piehl F, Karolinska Schizophrenia Project (KaSP) Consortium, Engberg G, Erhardt S. Increased number of monocytes and plasma levels of MCP-1 and YKL-40 in first-episode psychosis. Acta Psychiat Scand. 2018;138(5):432–40. https://doi.org/10.1111/acps.12944.

Article 
CAS 
PubMed 

Google Scholar
 

Müller N, Wagner JK, Krause D, Weidinger E, Wildenauer A, Obermeier M, Dehning S, Gruber R, Schwarz MJ. Impaired monocyte activation in schizophrenia. Psychiatry Res. 2012;198(3):341–6. https://doi.org/10.1016/j.psychres.2011.12.049.

Article 
CAS 
PubMed 

Google Scholar
 

Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94. https://doi.org/10.1038/nn1997.

Article 
CAS 
PubMed 

Google Scholar
 

Munn NA. Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses. 2000;54(2):198–202. https://doi.org/10.1054/mehy.1999.0018.

Article 
CAS 
PubMed 

Google Scholar
 

Monji A, Kato T, Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63(3):257–65. https://doi.org/10.1111/j.1440-1819.2009.01945.x.

Article 
CAS 
PubMed 

Google Scholar
 

Goldsmith DR, Rapaport MH, Miller BJ. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry. 2016;21(12):1696–709. https://doi.org/10.1038/mp.2016.3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fond G, Lançon C, Korchia T, Auquier P, Boyer L. The role of inflammation in the treatment of schizophrenia. Front Psychiatry. 2020;11:160. https://doi.org/10.3389/fpsyt.2020.00160.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mostaid MS, Pantelis C, Everall IP, Bousman CA. Decreased peripheral TNF alpha (TNF-α) mRNA expression in patients with treatment-resistant schizophrenia. Schizophr Res. 2018;202:387–8. https://doi.org/10.1016/j.schres.2018.04.032.

Article 
PubMed 

Google Scholar
 

Zhu S, Zhao L, Fan Y, Lv Q, Wu K, Lang X, Li Z, Yi Z, Geng D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology. 2020;114:104595. https://doi.org/10.1016/j.psyneuen.2020.104595.

Article 
CAS 
PubMed 

Google Scholar
 

Peng S, Liang C, Deng S, Fu Y. Study on the clinical correlation between the expression of serum TNF-α and iNOS as well as cognitive impairment and disease burden in patients with schizophrenia. Pak J Med Sci. 2022;38(7):1838–43. https://doi.org/10.12669/pjms.38.7.5326.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, Oliva S, Aloi M, Stronati L. Transcription factor ZNF281: A novel player in intestinal inflammation and fibrosis. Front Immunol. 2018;9:2907. https://doi.org/10.3389/fimmu.2018.02907.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pieraccioli M, Nicolai S, Pitolli C, Agostini M, Antonov A, Malewicz M, Knight RA, Raschellà G, Melino G. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. Proc Natl Acad Sci U S A. 2018;115(28):7356–61. https://doi.org/10.1073/pnas.1801435115.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhen J, Ke Y, Pan J, Zhou M, Zeng H, Song G, Yu Z, Fu B, Liu Y, Huang D, Wu H. ZNF320 is a hypomethylated prognostic biomarker involved in immune infiltration of hepatocellular carcinoma and associated with cell cycle. Aging. 2022;14(20):8411–36. https://doi.org/10.18632/aging.20435.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chu T, Hu S, Qi J, Li X, Zhang X, Tang Y, Yang M, Xu Y, Ruan CG, Han Y, Wu DP. Bifunctional effect of the inflammatory cytokine tumor necrosis factor α on megakaryopoiesis and platelet production. J Thromb Haemost. 2022;20(12):2998–3010. https://doi.org/10.1111/jth.15891.

Article 
CAS 
PubMed 

Google Scholar
 

Srinivas L, Vellichirammal NN, Alex AM, Nair C, Nair IV, Banerjee M. Pro-inflammatory cytokines and their epistatic interactions in genetic susceptibility to schizophrenia. J Neuroinflammation. 2016;13(1):105. https://doi.org/10.1186/s12974-016-0.

Article 
PubMed 
PubMed Central 

Google Scholar