Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

ADS 
PubMed 

Google Scholar
 

Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

ADS 

Google Scholar
 

Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

ADS 

Google Scholar
 

Chen, Y., Awasthi, A. K., Wei, F., Tan, Q. & Li, J. Single-use plastics: Production, usage, disposal, and adverse impacts. Sci. Total Environ. 752, 141772 (2021).

PubMed 

Google Scholar
 

OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. (Organisation for Economic Co-operation and Development, Paris, 2022).

Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Sangroniz, A. et al. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 10, 3559 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J., Wang, L. & Kannan, K. Microplastics in house dust from 12 countries and associated human exposure. Environ. Int. 134, 105314 (2020).

PubMed 

Google Scholar
 

Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

PubMed 

Google Scholar
 

Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).

PubMed 

Google Scholar
 

Blackburn, K. & Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio 51, 518–530 (2022).

ADS 
PubMed 

Google Scholar
 

Van der Laan, L. J. W., Bosker, T. & Peijnenburg, W. J. G. M. Deciphering potential implications of dietary microplastics for human health. Nat. Rev. Gastroenterol. Hepatol. 20, 340–341 (2023).

PubMed 

Google Scholar
 

Ghosh, S. et al. Microplastics as an emerging threat to the global environment and human health. Sustainability 15, 10821 (2023).


Google Scholar
 

Fleury, J.-B. & Baulin, V. A. Microplastics destabilize lipid membranes by mechanical stretching. Proc. Natl. Acad. Sci. 118, e2104610118 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Ford, H. V. et al. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 806, 150392 (2022).

PubMed 

Google Scholar
 

Andreoni, V., Saveyn, H. G. M. & Eder, P. Polyethylene recycling: waste policy scenario analysis for the EU-27. J. Environ. Manag. 158, 103–110 (2015).


Google Scholar
 

Jia, L., Evans, S. & Linden, S. van der. Motivating actions to mitigate plastic pollution. Nat. Commun. 10, 4582 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Herberz, T., Barlow, C. Y. & Finkbeiner, M. Sustainability assessment of a single-use plastics ban. Sustainability 12, 3746 (2020).


Google Scholar
 

Single Use Packaging Market – Size, Share & Industry Report. https://www.mordorintelligence.com/industry-reports/single-use-plastic-packaging-market (2023).

Gross, R. A. & Kalra, B. Biodegradable polymers for the environment. Science 297, 803–807 (2002).

ADS 
PubMed 

Google Scholar
 

Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Guicherd, M. et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 631, 884–890 (2024).

PubMed 

Google Scholar
 

Surendren, A., Mohanty, A. K., Liu, Q. & Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green. Chem. 24, 8606–8636 (2022).


Google Scholar
 

Grushkin, D. Breaking the mold. Nat. Biotechnol. 29, 16–18 (2011).

PubMed 

Google Scholar
 

Bergeson, A. R., Silvera, A. J. & Alper, H. S. Bottlenecks in biobased approaches to plastic degradation. Nat. Commun. 15, 4715 (2024).

PubMed 
PubMed Central 

Google Scholar
 

Slezak, R., Krzystek, L., Puchalski, M., Krucińska, I. & Sitarski, A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 866, 161401 (2023).

PubMed 

Google Scholar
 

Royer, S.-J., Greco, F., Kogler, M. & Deheyn, D. D. Not so biodegradable: polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLOS ONE 18, e0284681 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

ADS 
PubMed 

Google Scholar
 

Luzier, W. D. Materials derived from biomass/biodegradable materials. Proc. Natl. Acad. Sci. 89, 839–842 (1992).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

AkdoÄŸan, E. et al. Accelerating the environmental biodegradation of poly-3-hydroxybutyrate (PHB) via plasma surface treatment. Bioresour. Technol. Rep. 25, 101719 (2024).


Google Scholar
 

Wang, G., Huang, D., Ji, J., Völker, C. & Wurm, F. R. Seawater-degradable polymers—fighting the marine plastic pollution. Adv. Sci. 8, 2001121 (2020).


Google Scholar
 

Gasparyan, K. G., Tyubaeva, P. M., Varyan, I. A., Vetcher, A. A. & Popov, A. A. Assessing the biodegradability of PHB-based materials with different surface areas: a comparative study on soil exposure of films and electrospun materials. Polymers 15, 2042 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Kora, A. J. Leaves as dining plates, food wraps and food packing material: importance of renewable resources in Indian culture. Bull. Natl. Res. Cent. 43, 205 (2019).


Google Scholar
 

Serbin, S. P. & Townsend, P. A. Scaling Functional Traits from Leaves to Canopies. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 43–82 (Springer International Publishing, Cham, 2020).

Jeong, J.-H. et al. Anti-Tumoral Effect of the Mitochondrial Target Domain of Noxa Delivered by an Engineered Salmonella Typhimurium. PLoS ONE 9, e80050 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Parikh, B. H. et al. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat. Commun. 13, 2796 (2022).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Weems, A. C., Arno, M. C., Yu, W., Huckstepp, R. T. R. & Dove, A. P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nat. Commun. 12, 3771 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, J. & Song, J. High performance shape memory polymer networks based on rigid nanoparticle cores. Proc. Natl. Acad. Sci. 107, 7652–7657 (2010).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ham, H. O. et al. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A. Nat. Commun. 7, 11140 (2016).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, S. et al. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat. Commun. 11, 1107 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Choi, Y. S. et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat. Commun. 11, 5990 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Boyer, J. C., Taylor, L. W. & Nylander-French, L. A. Viability of cultured human skin cells treated with 1,6-hexamethylene diisocyanate monomer and its oligomer isocyanurate in different culture media. Sci. Rep. 11, 23804 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=2263&sort=FCN_No&order=DESC&startrow=1&type=basic&search=polylactic%20acid (2022).

Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=1887&sort=FCN_No&order=DESC&startrow=1&type=basic&search=cellulose%20 (2018).

Inventory of Effective Food Contact Substance (FCS) Notifications. https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=FCN&id=1901&sort=FCN_No&order=DESC&startrow=1&type=basic&search=hexamethylene%20diisocyanate (2018).

Liu, Y. et al. A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 112, 532–546 (2021).


Google Scholar
 

Carosio, F. et al. Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem. Mater. 26, 5459–5466 (2014).


Google Scholar
 

Anggarini, U. et al. A highly water-selective carboxymethylated cellulose nanofiber (CNF-CMC) membrane for the separation of binary (water/N2) and ternary (water/alcohols/N2) systems in vapor-permeation. J. Membr. Sci. 691, 122229 (2024).


Google Scholar
 

Ustin, S. L. & Jacquemoud, S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 349–384 (Springer International Publishing, Cham, 2020).

Wang, S., Ren, L., Liu, Y., Han, Z. & Yang, Y. Mechanical characteristics of typical plant leaves. J. Bionic Eng. 7, 294–300 (2010).


Google Scholar
 

Ruzi, M., Celik, N. & Onses, M. S. Superhydrophobic coatings for food packaging applications: a review. Food Packag. Shelf Life 32, 100823 (2022).


Google Scholar
 

Rio, E. & Boulogne, F. Withdrawing a solid from a bath: How much liquid is coated?. Adv. Colloid Interface Sci. 247, 100–114 (2017).

PubMed 

Google Scholar
 

Puetz, J. & Aegerter, M. A. Dip Coating Technique. in Sol-Gel Technologies for Glass Producers and Users (eds. Aegerter, M. A. & Mennig, M.) 37–48 (Springer US, Boston, MA, 2004)..

Rbihi, S., Aboulouard, A., Laallam, L. & Jouaiti, A. Contact angle measurements of cellulose based thin film composites: wettability, surface free energy and surface hardness. Surf. Interfaces 21, 100708 (2020).


Google Scholar
 

Strutynski, C. et al. 4D Optical fibers based on shape-memory polymers. Nat. Commun. 14, 6561 (2023).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J. et al. Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38, 8012–8021 (2005).

ADS 

Google Scholar
 

Echeverría, C., Limón, I., Muñoz-Bonilla, A., Fernández-García, M. & López, D. Development of highly crystalline polylactic acid with β-crystalline phase from the induced alignment of electrospun fibers. Polymers 13, 2860 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Jokar, M., Abdul Rahman, R., Ibrahim, N. A., Abdullah, L. C. & Tan, C. P. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioprocess Technol. 5, 719–728 (2012).


Google Scholar
 

Yang, H., Jacucci, G., Schertel, L. & Vignolini, S. Cellulose-based scattering enhancers for light management applications. ACS Nano 16, 7373–7379 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Reddy, I. V. A. K. et al. Ultrabroadband terahertz-band communications with self-healing Bessel beams. Commun. Eng. 2, 1–9 (2023).


Google Scholar
 

Hutchinson, M. H., Dorgan, J. R., Knauss, D. M. & Hait, S. B. Optical properties of polylactides. J. Polym. Environ. 14, 119–124 (2006).


Google Scholar
 

Ward, C. P. & Reddy, C. M. We need better data about the environmental persistence of plastic goods. Proc. Natl. Acad. Sci. 117, 14618–14621 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wurzbacher, C. E. et al. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci. Rep. 14, 5741 (2024).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Boedeker, C. et al. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8, 14853 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, L. et al. Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules 22, 4037–4059 (2021).

PubMed 

Google Scholar
 

Delgado-Aguilar, M. et al. Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications. BioResources 10, 5345–5355 (2015).


Google Scholar
 

Wellenreuther, C., Wolf, A. & Zander, N. Cost competitiveness of sustainable bioplastic feedstocks – A Monte Carlo analysis for polylactic acid. Clean. Eng. Technol. 6, 100411 (2022).


Google Scholar
 

Wimberger, L., Ng, G. & Boyer, C. Light-driven polymer recycling to monomers and small molecules. Nat. Commun. 15, 2510 (2024).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

US polyethylene price evolution and what to expect | McKinsey. https://www.mckinsey.com/industries/chemicals/our-insights/us-polyethylene-price-evolution-and-what-to-expect.

Liu, W., Wu, X., Chen, X., Liu, S. & Zhang, C. Flexibly Controlling the Polycrystallinity and Improving the Foaming Behavior of Polylactic Acid via Three Strategies. ACS Omega 7, 6248–6260 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).


Google Scholar
Â