Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

ADS 
CAS 
PubMed 

Google Scholar
 

Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446–449 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Chen, Z. et al. Ultrafast self-induced X-ray transparency and loss of magnetic diffraction. Phys. Rev. Lett. 121, 137403 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Weninger, C. et al. Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013).

ADS 
PubMed 

Google Scholar
 

Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

ADS 
CAS 
PubMed 

Google Scholar
 

Rohringer, N. X-ray Raman scattering: a building block for nonlinear spectroscopy. Philos. Trans. R. Soc. A 377, 20170471 (2019).

ADS 
CAS 

Google Scholar
 

O’Neal, J. T. et al. Electronic population transfer via impulsive stimulated X-ray Raman scattering with attosecond soft-X-ray pulses. Phys. Rev. Lett. 125, 073203 (2020).

ADS 
PubMed 

Google Scholar
 

Eichmann, U. et al. Photon-recoil imaging: expanding the view of nonlinear X-ray physics. Science 369, 1630–1633 (2020).

ADS 
CAS 
PubMed 

Google Scholar
 

Möckl, L., Lamb, D. C. & Bräuchle, C. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Ed. 53, 13972–13977 (2014).


Google Scholar
 

Keefer, D. et al. Ultrafast X-ray probes of elementary molecular events. Annu. Rev. Phys. Chem. 74, 73–97 (2023).

ADS 
CAS 
PubMed 

Google Scholar
 

Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

ADS 

Google Scholar
 

Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

ADS 

Google Scholar
 

Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

ADS 
MathSciNet 

Google Scholar
 

Kelley, P. L. Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965).

ADS 

Google Scholar
 

Minck, R., Terhune, R. & Rado, W. Laser-stimulated Raman effect and resonant four-photon interactions in gases H2, D2, and CH4. Appl. Phys. Lett. 3, 181–184 (1963).

ADS 
CAS 

Google Scholar
 

Giordmaine, J. A. & Kaiser, W. Light scattering by coherently driven lattice vibrations. Phys. Rev. 144, 676–688 (1966).

ADS 
CAS 

Google Scholar
 

Von der Linde, D., Laubereau, A. & Kaiser, W. Molecular vibrations in liquids: direct measurement of the molecular dephasing time; determination of the shape of picosecond light pulses. Phys. Rev. Lett. 26, 954–957 (1971).

ADS 

Google Scholar
 

Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

CAS 

Google Scholar
 

Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

ADS 
CAS 
PubMed 

Google Scholar
 

Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

ADS 
CAS 

Google Scholar
 

Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).

ADS 
CAS 

Google Scholar
 

Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

MathSciNet 
CAS 

Google Scholar
 

Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, K., Labeye, M., Ho, P. J., Gaarde, M. B. & Young, L. Resonant propagation of x rays from the linear to the nonlinear regime. Phys. Rev. A 102, 053113 (2020).

ADS 
CAS 

Google Scholar
 

Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

ADS 
CAS 
PubMed 

Google Scholar
 

Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).

ADS 
CAS 
PubMed 

Google Scholar
 

Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).

ADS 
PubMed 

Google Scholar
 

Gel’mukhanov, F. & Ågren, H. Resonant X-ray Raman scattering. Phys. Rep. 312, 87–330 (1999).

ADS 

Google Scholar
 

Weninger, C. & Rohringer, N. Stimulated resonant X-ray Raman scattering with incoherent radiation. Phys. Rev. A 88, 053421 (2013).

ADS 

Google Scholar
 

Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bergmann, U. Stimulated X-ray emission spectroscopy. Photosynth. Res. 162, 371–384 (2024).

CAS 
PubMed 

Google Scholar
 

Bonifacio, R., De Salvo, L., Pierini, P., Piovella, N. & Pellegrini, C. Spectrum, temporal structure, and fluctuations in a high-gain free-electron laser starting from noise. Phys. Rev. Lett. 73, 70–73 (1994).

ADS 
CAS 
PubMed 

Google Scholar
 

Krinsky, S. & Gluckstern, R. L. Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser. Phys. Rev. Accel. Beams 6, 050701 (2003).

ADS 

Google Scholar
 

Frasinski, L. J., Codling, K. & Hatherly, P. A. Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989).

ADS 
CAS 
PubMed 

Google Scholar
 

Kimberg, V. & Rohringer, N. Stochastic stimulated electronic X-ray Raman spectroscopy. Struct. Dyn. 3, 034101 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Kayser, Y. et al. Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nat. Commun. 10, 4761 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Driver, T. et al. Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Phys. Chem. Chem. Phys. 22, 2704–2712 (2020).

CAS 
PubMed 

Google Scholar
 

Zhaunerchyk, V., Frasinski, L., Eland, J. H. & Feifel, R. Theory and simulations of covariance mapping in multiple dimensions for data analysis in high-event-rate experiments. Phys. Rev. A 89, 053418 (2014).

ADS 

Google Scholar
 

Müller, A. et al. Photoionization of Ne atoms and Ne+ ions near the K edge: precision spectroscopy and absolute cross-sections. Astrophys. J. 836, 166 (2017).

ADS 

Google Scholar
 

Gel’mukhanov, F., Odelius, M., Polyutov, S. P., Föhlisch, A. & Kimberg, V. Dynamics of resonant X-ray and Auger scattering. Rev. Mod. Phys. 93, 035001 (2021).

ADS 

Google Scholar
 

Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).

ADS 
PubMed 

Google Scholar
 

Vannucci, G. & Teich, M. C. Computer simulation of superposed coherent and chaotic radiation. Appl. Opt. 19, 548–553 (1980).

ADS 
CAS 
PubMed 

Google Scholar
 

Pfeifer, T., Jiang, Y., Düsterer, S., Moshammer, R. & Ullrich, J. Partial-coherence method to model experimental free-electron laser pulse statistics. Opt. Lett. 35, 3441–3443 (2010).

ADS 
PubMed 

Google Scholar
 

Li, K. et al. Ghost-imaging-enhanced noninvasive spectral characterization of stochastic X-ray free-electron-laser pulses. Commun. Phys. 5, 191 (2022).


Google Scholar
 

Weninger, C. & Rohringer, N. Transient-gain photoionization X-ray laser. Phys. Rev. A 90, 063828 (2014).

ADS 

Google Scholar
 

Lutman, A. et al. Femtosecond X-ray free electron laser pulse duration measurement from spectral correlation function. Phys. Rev. Accel. Beams 15, 030705 (2012).

ADS 

Google Scholar
 

Miyawaki, J. et al. Design of ultrahigh energy resolution RIXS beamline at NanoTerasu. J. Phys. Conf. Ser. 2380, 012030 (2022).

CAS 

Google Scholar
 

Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

ADS 
CAS 
PubMed 

Google Scholar
 

Higley, D. J. et al. Stimulated resonant inelastic X-ray scattering in a solid. Commun. Phys. 5, 83 (2022).

CAS 

Google Scholar
 

Alexander, O. et al. Attosecond impulsive stimulated X-ray Raman scattering in liquid water. Sci. Adv. 10, eadp0841 (2024).

PubMed 

Google Scholar
 

Cavaletto, S. M., Keefer, D. & Mukamel, S. High temporal and spectral resolution of stimulated X-ray Raman signals with stochastic free-electron-laser pulses. Phys. Rev. X 11, 011029 (2021).

CAS 

Google Scholar
 

Dommach, M. et al. The photon beamline vacuum system of the European XFEL. J. Synchrotron Radiat. 28, 1229–1236 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Mazza, T. et al. The beam transport system for the small quantum systems instrument at the European XFEL: optical layout and first commissioning results. J. Synchrotron Radiat. 30, 457–467 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

ADS 

Google Scholar
 

Li, K. Super-resolution stimulated X-ray Raman spectroscopy. Zenodo https://doi.org/10.5281/zenodo.15253560 (2025).

Nordgren, J. et al. Soft X-ray emission spectroscopy using monochromatized synchrotron radiation. Rev. Sci. Instrum. 60, 1690–1696 (1989).

ADS 
CAS 

Google Scholar