Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol. 2024;22(11):705–21.
Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. Tracing the enterococci from paleozoic origins to the hospital. Cell. 2017;169(5):849–e861813.
Shrestha S, Kharel S, Homagain S, Aryal R, Mishra SK. Prevalence of vancomycin-resistant enterococci in Asia-a systematic review and meta-analysis. J Clin Pharm Ther. 2021;46(5):1226–37.
O’Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217–30.
Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: a bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J. 2019;34(3):184–93.
Cheah AL, Spelman T, Liew D, Peel T, Howden BP, Spelman D, et al. Enterococcal bacteraemia: factors influencing mortality, length of stay and costs of hospitalization. Clin Microbiol Infect. 2013;19(4):E181-189.
Jamal M, Bukhari S, Andleeb S, Ali M, Raza S, Nawaz MA, et al. Bacteriophages: an overview of the control strategies against multiple bacterial infections in different fields. J Basic Microbiol. 2019;59(2):123–33.
Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–86.
Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, et al. Bacteriophages and its applications: an overview. Folia Microbiol (Praha). 2017;62(1):17–55.
Łoś J, Zielińska S, Krajewska A, Michalina Z, Małachowska A, Kwaśnicka K, et al. Temperate Phages, Prophages, and Lysogeny. In: Harper DR, Abedon ST, Burrowes BH, McConville ML, editors. Bacteriophages: Biology, Technology, Therapy. Cham: Springer International Publishing; 2020. p. 1–33.
Strathdee SA, Hatfull GF, Mutalik VK, Schooley RT. Phage therapy: from biological mechanisms to future directions. Cell. 2023;186(1):17–31.
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, et al. Endolysin, a promising solution against antimicrobial resistance. Antibiotics. 2021. https://doi.org/10.3390/antibiotics10111277.
Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4(5):354–65.
Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8.
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev. 2003;67(2):238–76. table of contents.
Bobay LM, Rocha EP, Touchon M. The adaptation of temperate bacteriophages to their host genomes. Mol Biol Evol. 2013;30(4):737–51.
Canfield GS, Chatterjee A, Espinosa J, Mangalea MR, Sheriff EK, Keidan M, McBride SW, McCollister BD, Hang HC, Duerkop BA. Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium. Antimicrob Agents Chemother 2023;65(5):e00143–21.
El Haddad L, Angelidakis G, Clark JR, Mendoza JF, Terwilliger AL, Chaftari CP, Duna M, Yusuf ST, Harb CP, Stibich M, et al. Genomic and functional characterization of Vancomycin-Resistant Enterococci-Specific bacteriophages in the galleria Mellonella wax moth larvae model. Pharmaceutics. 2022;14(8):1591.
Gong P, Cheng M, Li X, Jiang H, Yu C, Kahaer N, et al. Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology. 2016;492:11–20.
Premetis GE, Stathi A, Papageorgiou AC, Labrou NE. Structural and functional features of a broad-spectrum prophage-encoded enzybiotic from Enterococcus faecium. Sci Rep. 2023;13(1):7450.
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, et al. Long-read sequencing-based in Silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics. 2021;22(1):758.
Lopes J, de Lencastre H, Conceição T. Genomic analysis of Enterococcus faecium from non-clinical settings: antimicrobial resistance, virulence, and clonal population in livestock and the urban environment. Front Microbiol. 2024;15:1466990.
Wishart DS, Han S, Saha S, Oler E, Peters H, Grant JR, Stothard P, Gautam V. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51(W1):W443–50.
Stefanic P, Stare E, Floccari VA, Kovac J, Hertel R, Rocha U, et al. Ecology of prophage-like elements in Bacillus subtilis at global and local geographical scales. Cell Rep. 2025;44(1):115197.
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Database issue):D325-328.
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–57.
Bouras G, Nepal R, Houtak G, Psaltis AJ, Wormald PJ, Vreugde S. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics. 2023. https://doi.org/10.1093/bioinformatics/btac776.
McNair K, Zhou C, Dinsdale EA, Souza B, Edwards RA. Phanotate: a novel approach to gene identification in phage genomes. Bioinformatics. 2019;35(22):4537–42.
Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Pérez Bucio RE, Mom R, et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform. 2021;3(3):lqab067.
Jiang JZ, Yuan WG, Shang J, Shi YH, Yang LL, Liu M, et al. Virus classification for viral genomic fragments using PhaGCN2. Brief Bioinform. 2023. https://doi.org/10.1093/bib/bbac505.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.
Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293-6.
Shan G, Gerstenberger S. Fisher’s exact approach for post hoc analysis of a chi-squared test. PLoS ONE. 2017;12(12):e0188709.
Csárdi G, Nepusz T. The igraph software package for complex network research; 2006. https://igraph.org.
Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A Grammar of Data Manipulation; 2025. https://dplyr.tidyverse.org.
Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A Stat Soc. 2011;174(1):245–6.
Pedersen TL. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks; 2025. https://ggraph.data-imaginist.com.
Zhang Z. Reshaping and aggregating data: an introduction to reshape package. Ann Transl Med. 2016;4(4):78.
Wickham H, Bryan J. readxl: Read Excel Files; 2025. https://readxl.tidyverse.org.
Wickham H, Pedersen TL, Seidel D. scales: Scale Functions for Visualization; 2025. https://scales.r-lib.org.
Chang W. extrafont: Tools for Using Fonts; 2023. https://CRAN.R-project.org/package=extrafont.
Kang F, Chai Z, Li B, Hu M, Yang Z, Wang X, et al. Characterization and diversity of Klebsiella pneumoniae prophages. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24119116.
Loh B, Chen J, Manohar P, Yu Y, Hua X, Leptihn S. A biological inventory of prophages in A. baumannii genomes reveal distinct distributions in classes, length, and genomic positions. Front Microbiol. 2020;11:579802.
Ene A, Miller-Ensminger T, Mores CR, Giannattasio-Ferraz S, Wolfe AJ, Abouelfetouh A, et al. Examination of Staphylococcus aureus prophages circulating in Egypt. Viruses. 2021. https://doi.org/10.3390/v13020337.
Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10(11):2744–54.
Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol. 2020;18(6):344–59.
Touchon M, Cury J, Yoon EJ, Krizova L, Cerqueira GC, Murphy C, et al. The genomic diversification of the whole acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol. 2014;6(10):2866–82.
Młynarczyk A, Młynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review. Zentralbl Bakteriol. 1998;287(4):277–314.
Göller PC, Elsener T, Lorgé D, Radulovic N, Bernardi V, Naumann A, et al. Multi-species host range of Staphylococcal phages isolated from wastewater. Nat Commun. 2021;12(1):6965.
Jacquet C, Catimel B, Brosch R, Buchrieser C, Dehaumont P, Goulet V, et al. Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl Environ Microbiol. 1995;61(6):2242–6.
Oliveira H, Sampaio M, Melo LDR, Dias O, Pope WH, Hatfull GF, et al. Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics. 2019;20(1):357.
Ribes-Martínez L, Muñoz-Egea MC, Yuste J, Esteban J, García-Quintanilla M. Bacteriophage therapy as a promising alternative for antibiotic-resistant Enterococcus faecium: advances and challenges. Antibiotics. 2024. https://doi.org/10.3390/antibiotics13121120.
Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis. 2005;11(6):821–8.
Correa-Martinez CL, Tönnies H, Froböse NJ, Mellmann A, Kampmeier S. Transmission of Vancomycin-Resistant enterococci in the hospital setting: Uncovering the Patient-Environment interplay. Microorganisms. 2020;8(2):203.
Blau K, Gallert C. Prophage carriage and genetic diversity within environmental isolates of clostridioides difficile. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms25010002.
Tenorio-Carnalla K, Aguilar-Vera A, Hernández-Alvarez AJ, López-Leal G, Mateo-Estrada V, Santamaria RI, et al. Host population structure and species resolution reveal prophage transmission dynamics. mBio. 2024;15(10):e0237724.
Silpe JE, Duddy OP, Johnson GE, Beggs GA, Hussain FA, Forsberg KJ, et al. Small protein modules dictate prophage fates during polylysogeny. Nature. 2023;620(7974):625–33.
Refardt D. Within-host competition determines reproductive success of temperate bacteriophages. ISME J. 2011;5(9):1451–60.
Pyenson NC, Leeks A, Nweke O, Goldford JE, Schluter J, Turner PE, et al. Diverse phage communities are maintained stably on a clonal bacterial host. Science. 2024;386(6727):1294–300.
Sanjuán R. The social life of viruses. Annu Rev Virol. 2021;8(1):183–99.
Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, et al. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol. 2024;90(5):e0028624.
Burns N, James CE, Harrison E. Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo. Evol Appl. 2015;8(4):346–51.
Bürkle M, Korf IHE, Lippegaus A, Krautwurst S, Rohde C, Weissfuss C, et al. Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa. ISME J. 2025. https://doi.org/10.1093/ismejo/wraf065.
Kondo K, Kawano M, Sugai M. Distribution of antimicrobial resistance and virulence genes within the prophage-associated regions in nosocomial pathogens. mSphere. 2021;6(4):e0045221.
Mazaheri Nezhad Fard R, Barton MD, Heuzenroeder MW. Bacteriophage-mediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol. 2011;52(6):559–64.
Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, et al. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol. 2010;192(4):1122–30.
Werner G, Coque TM, Franz CM, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol. 2013;303(6–7):360–79.
Hendrickx AP, van Luit-Asbroek M, Schapendonk CM, van Wamel WJ, Braat JC, Wijnands LM, Bonten MJ, Willems RJ. SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium. Infect Immun. 2009;77(11):5097–106.
Abdelrahman KA, Hashem YA, Szubin R, Monk JM, Kashef MT, Aziz RK. Sequencing and genome-scale virulome reconstruction of Enterococcus faecalis clinical isolates delineate genes involved in gelatinase activity and biofilm formation. Microb Pathog. 2025;206:107721.
Sabur A, Khan A, Borphukan B, Razzak A, Salimullah M, Khatun M. The unique capability of endolysin to tackle antibiotic resistance: cracking the barrier. J Xenobiot 2025;15(1):19.
Love MJ, Bhandari D, Dobson RCJ, Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiot (Basel) 2018;7(1).
Marques AT, Tanoeiro L, Duarte A, Gonçalves L, Vítor JMB, Vale FF. Genomic analysis of prophages from Klebsiella pneumoniae clinical isolates. Microorganisms. 2021. https://doi.org/10.3390/microorganisms9112252.
Alrafaie AM, Stafford GP. Enterococcal bacteriophage: a survey of the tail associated lysin landscape. Virus Res. 2023;327:199073.
Martín-Galiano AJ, García E. Streptococcus pneumoniae: a plethora of temperate bacteriophages with a role in host genome rearrangement. Front Cell Infect Microbiol. 2021;11:775402.
van Hal SJ, Willems RJL, Gouliouris T, Ballard SA, Coque TM, Hammerum AM, Hegstad K, Pinholt M, Howden BP, Malhotra-Kumar S, et al. The interplay between community and hospital Enterococcus faecium clones within health-care settings: a genomic analysis. Lancet Microbe. 2022;3(2):e133–41.
Gouliouris T, Raven KE, Ludden C, Blane B, Corander J, Horner CS, et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio. 2018. https://doi.org/10.1128/mBio.01780-18.