Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85.
Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29:460–8.
Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA. Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution. 2020;74:1451–65. https://doi.org/10.1111/evo.14029.
Laporta GZ, Potter AM, Oliveira JF, Bourke BP, Pecor DB, Linton YM. Global distribution of Aedes aegypti and Aedes albopictus in a climate change scenario of regional rivalry. Insects. 2023;14:49.
Velayudhan R. Brief overview of the World Health Organization “Vector Control Global Response 2017–2030” and “Vector Control Advisory Group” activities. In: Hendrichs J, Pereira R, Vreysen MJB, editors. Area-wide integrated pest management. Boca Raton: CRC Press; 2021. p. 633–44.
Schaffner F, Medlock JM, Van Bortel W. Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect. 2013;19:685–92.
Hebert PD, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270:313–21.
Behura SK. Molecular marker systems in insects: current trends and future avenues. Mol Ecol. 2006;15:3087–113.
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117.
Prretta D, Mastrantonio V, Bellini R, Somboon P, Urbanelli S. Glacial history of a modern invader: phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus. PLoS ONE. 2012;7:e44515.
Battaglia V, Gabrieli P, Brandini S, Capodiferro MR, Javier PA, Chen XG, et al. The worldwide spread of the tiger mosquito Aedes albopictus: a genomic perspective. Evol Appl. 2016;9:1005–17.
Hurst GD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci. 2005;272:1525–34.
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139:1268–78.
Zhou W, Rousset F, O’Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998;265:509–15.
Tortosa P, Charlat S, Labbe P, Dehecq JS, Barré H, Weill M. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS ONE. 2010;5:e9700.
Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017;5;13:e1006006.
Johnson KN, Ross PA, Hoffmann AA. Environmental determinants of Wolbachia prevalence in Aedes aegypti populations: Urbanization, altitude, and trade-offs in thermal tolerance. PLoS Neg Trop Dis. 2019;13:e0007356. https://doi.org/10.1371/journal.pntd.0007356.
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A review: Aedes-borne arboviral infections, controls and Wolbachia-based strategies. Vaccines. 2021;9:32.
Brown JE, Simmons CP, O’Neill SL. Climate change and symbiont dynamics: challenges for Wolbachia-mediated arbovirus control in a warming world. Trends Parasitol. 2021;37:217–28. https://doi.org/10.1016/j.pt.2020.12.002.
Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012;104:126–31.
Vontas J, Kioulos E, Pavlidi N, Morou E, Della Torre A, Ranson H. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Tancredi A, Papandrea D, Marconcini M, Carballar-Lejarazu R, Casas-Martinez M, Lo E, et al. Insecticide resistance in Aedes aegypti and Aedes albopictus from Brazil: a review. PLoS Negl Trop Dis. 2020;14:e0008939.
Bharati M, Saha D. Insecticide resistance status and biochemical mechanisms involved in Aedes mosquitoes: a scoping review. Asian Pac J Trop Med. 2021;14:52–63. https://doi.org/10.4103/1995-7645.306737.
Soderlund DM. Pyrethroids, knockdown resistance and sodium channels. Pest Manag Sci. 2008;64:610–6.
O’Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TE. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J. 2006;396:255–63.
Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O, et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis. 2011;64:217–21.
Endersby-Harshman NM, Schmidt TL, Hoffmann AA. Diversity and distribution of sodium channel mutations in Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2024;61:630–43.
Hu Z, Du Y, Nomura Y, Dong K. A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I pyrethroids. Insect Biochem Mol Biol. 2011;41:9–13.
Xu J, Bonizzoni M, Zhong D, Zhou G, Cai S, Li Y, et al. Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus. PLoS Negl Trop Dis. 2016;10:e0004696.
Chen H, Li K, Wang X, Yang X, Lin Y, Cai F, et al. First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty. 2016;5:40–7.
Abernathy HA, Hollingsworth BD, Giandomenico DA, Moser KA, Juliano JJ, Bowman NM, et al. Prevalence of knock-down resistance F1534S mutations in Aedes albopictus (Skuse) (Diptera: Culicidae) in North Carolina. J Med Entomol. 2022;59:1363–7.
Kasai S, Caputo B, Tsunoda T, Cuong TC, Maekawa Y, Lam-Phua SG, et al. First detection of a Vssc allele V1016G conferring a high level of insecticide resistance in Aedes albopictus collected from Europe (Italy) and Asia (Vietnam), 2016: a new emerging threat to controlling arboviral diseases. Euro Surveill. 2019;24:1700847.
Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, et al. Molecular evidence of sequential evolution of DDT-and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Neg Trop Dis. 2019;13:e0007432.
Pichler V, Malandruccolo C, Serini P, Bellini R, Severini F, Toma L, et al. Phenotypic and genotypic pyrethroid resistance of Aedes albopictus, with focus on the 2017 chikungunya outbreak in Italy. Pest Manag Sci. 2019;75:2642–51.
Ahmad NA, Endersby-Harshman NM, Mohd Mazni NR, Mohd Zabari NZ, Amran SN, Ridhuan Ghazali MK, et al. Characterization of sodium channel mutations in the dengue vector mosquitoes Aedes aegypti and Aedes albopictus within the context of ongoing Wolbachia releases in Kuala Lumpur, Malaysia. Insects. 2020;11:529.
Wu Y, Liu Q, Qi Y, Wu Y, Ni Q, Chen W, et al. Knockdown resistance (kdr) mutations I1532T and F1534S were identified in Aedes albopictus field populations in Zhejiang Province, Central China. Front Cell Infect Microbiol. 2021;11:702081. https://doi.org/10.3389/fcimb.2021.702081.
Li Y, Xu J, Zhong D, Zhang H, Yang W, et al. Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors. 2018;11:1. https://doi.org/10.1186/s13071-017-2581-y.
Modak MP, Saha D. First report of F1534C kdr mutation in deltamethrin resistant Aedes albopictus from northern part of West Bengal, India. Sci Rep. 2022;12:13653. https://doi.org/10.1038/s41598-022-17739-2.
Guo Y, Zhou J, Zhao Y, Deng J, Su X, Tang J, et al. CRISPR/Cas9-mediated F1534S substitution in the voltage-gated sodium channel reveals its necessity and sufficiency for deltamethrin resistance in Aedes albopictus. J Pest Sci. 2023;96:1173–86. https://doi.org/10.1007/s10340-022-01557-6.
Plernsub S, Saingamsook J, Yanola J, Lumjuan N, Tippawangkosol P, Sukontason K, et al. Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand. Parasit Vectors. 2016;9:417. https://doi.org/10.1186/s13071-016-1713-0.
Haddi K, Tome HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017;7:46549. https://doi.org/10.1038/srep46549.
Das M, Dutta P. Status of insecticide resistance and detoxifying enzyme activity of Aedes albopictus population in Sonitpur district of Assam, India. Int J Mosq Res. 2014;1:35–41.
Marcombe S, Farajollahi A, Healy SP, Clark GG, Fonseca DM. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved. PLoS ONE. 2014;9:e101992. https://doi.org/10.1371/journal.pone.0101992.
Marcombe S, Shimell K, Savage R, Howlett E, Luangamath P, Nilaxay S, et al. Detection of pyrethroid resistance mutations and intron variants in the voltage-gated sodium channel of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus mosquitoes from Lao People’s Democratic Republic. Med Vet Entomol. 2022;36:424–34. https://doi.org/10.1111/mve.12580.
Doosti S, Yaghoobi-Ershadi MR, Schaffner F, Moosa-Kazemi SH, Akbarzadeh K, Gooya MM, et al. Mosquito surveillance and the first record of the invasive mosquito species Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) in southern Iran. Iran J Public Health. 2016;45:1064–73.
Azari-Hamidian S, Norouzi B, Maleki H, Rezvani SM, Pourgholami M, Oshaghi MA. First record of a medically important vector, the Asian tiger mosquito Aedes albopictus (Skuse, 1895) (Diptera: Culicidae), using morphological and molecular data in northern Iran. J Insect Biodivers Syst. 2024;10:953–63.
Ghavami MB, Panahi S, Nabati SM, Ghanbari M, Taghiloo B. A comprehensive survey of permethrin resistance in human head louse populations from northwest Iran: ex vivo and molecular monitoring of knockdown resistance alleles. Parasit Vectors. 2023;16:57. https://doi.org/10.1186/s13071-023-05652-0.
Folmer O, Hoeh WR, Black MB, Vrijenhoek RC. Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Mol Mar Biol Biotechnol. 1994;3:294–9.
Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE. 2013;8:e68586. https://doi.org/10.1371/journal.pone.0068586.
Kumar S, Stecher G, Suleski M, Sanderford M, Sharma S, Tamura K. MEGA12: molecular evolutionary genetic analysis version 12 for adaptive and green computing. Mol Biol Evol. 2024;41:msae263. https://doi.org/10.1093/molbev/msae263.
Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007;7:76–85.
Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–47.
Beebe NW, Ambrose L, Hill LA, Davis JB, Hapgood G, Cooper RD, et al. Tracing the tiger: population genetics provides valuable insights into the Aedes (Stegomyia) albopictus invasion of the Australasian Region. PLoS Negl Trop Dis. 2013;7:e2361.
Ruiling Z, Tongkai L, Dezhen M, Zhong Z. Genetic characters of the globally spread tiger mosquito, Aedes albopictus (Diptera: Culicidae): implications from mitochondrial gene COI. J Vector Ecol. 2018;43:89–97.
Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis. 2013;7:e2590.
Duong CV, Kang JH, Nguyen VV, Bae YJ. Genetic diversity and population structure of the Asian tiger mosquito (Aedes albopictus) in Vietnam: evidence for genetic differentiation by climate region. Genes. 2021;12:1579.
Ismail NA, Adilah-Amrannudin N, Hamsidi M, Ismail R, Dom NC, Ahmad AH, et al. The genetic diversity, haplotype analysis, and phylogenetic relationship of Aedes albopictus (Diptera: Culicidae) based on the cytochrome oxidase 1 marker: a Malaysian scenario. J Med Entomol. 2017;54:1573–81.
Zé-Zé L, Borges V, Osório HC, Machado J, Gomes JP, Alves MJ. Mitogenome diversity of Aedes (Stegomyia) albopictus: detection of multiple introduction events in Portugal. PLoS Negl Trop Dis. 2020;14:e0008657.
Zé-Zé L, Freitas IC, Silva M, Soares P, Alves MJ, Osório HC. The spread of the invasive mosquito Aedes albopictus (Diptera: Culicidae) in Portugal: a first genetic analysis. Parasit Vectors. 2024;17:389. https://doi.org/10.1186/s13071-024-06460-w.
Shaikevich E, Karan L, Fedorova M. Genetic structure of Aedes (Stegomyia) albopictus populations in Russia. J Arthropod Borne Dis. 2023;17:51.
Yang Q, Chung J, Robinson KL, Schmidt TL, Ross PA, Liang J, et al. Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Negl Trop Dis. 2022;16:e0010139.
Bertelsmeier C, Keller L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol Evol. 2018;33:527–34.
Vu TX, Andrianov BV, Vu DC, Goryacheva II. QPCR identification of the kdr allele F1534C in voltage-gated sodium channel gene (vgsc) of the major mosquito vectors Aedes aegypti and Aedes albopictus in Northern and Central Vietnam. Russ J Genet. 2020;56:460–9.
Zhou X, Li J, Ni R, Qiu X, Zhang Y, Tong Y. Insecticide resistance in the field populations of the Asian tiger mosquito Aedes albopictus in Beijing: resistance status and associated detoxification genes. Front Physiol. 2024;15:1498313. https://doi.org/10.3389/fphys.2024.1498313.
Regilme MA, Inukai T, Watanabe K. Detection and phylogeny of Wolbachia in field-collected Aedes albopictus and Aedes aegypti from Manila City. Philippines. 2021;24:2021–108. https://doi.org/10.1101/2021.08.24.457456.
Li Y, Sun Y, Zou J, Zhong D, Liu R, Zhu C, et al. Characterizing the Wolbachia infection in field-collected Culicidae mosquitoes from Hainan Province, China. Parasit Vectors. 2023;16:128. https://doi.org/10.1186/s13071-023-05719-y.
Ma Z, Gao J, Wang G, Zhao M, Xing D, Zhao T, et al. Effects of Wolbachia on mitochondrial DNA variation in Aedes albopictus (Diptera: Culicidae). Acta Trop. 2025;263:107561.
Kitrayapong P, Baimai V, O’Neill SL. Field prevalence of Wolbachia in the mosquito vector Aedes albopictus. Am J Trop Med Hyg. 2002;66:108–11. https://doi.org/10.4269/ajtmh.2002.66.108.
de Albuquerque AL, Magalhães T, Ayres CF. High prevalence and lack of diversity of Wolbachia pipientis in Aedes albopictus populations from Northeast Brazil. Mem Inst Oswaldo Cruz. 2011;106:773–6. https://doi.org/10.1590/s0074-02762011000600021.
Calvitti M, Moretti R, Lampazzi E, Bellini R, Dobson SL. Characterization of a new Aedes albopictus (Diptera: Culicidae)-Wolbachia pipientis (Rickettsiales: Rickettsiaceae) symbiotic association generated by artificial transfer of the w Pip strain from Culex pipiens (Diptera: Culicidae). J Med Entomol. 2014;47:179–87.
Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1989.
Silver JB. Mosquito ecology: field sampling methods. Heidelberg Berlin New York: Springer; 2007.
Farajollahi A, Kesavaraju B, Price DC, Williams GM, Healy SP, Gaugler R, et al. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J Med Entomol. 2009;46:919–25.
Pelletier J, Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2009;54:105–20.
Ravel S, Monteny N, Olmos DV, Verdugo JE, Cuny G. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers. Acta Trop. 2001;78:241–50.
David JP, Faucon F, Chandor-Proust A, Poupardin R, Riaz MA, Bonin A, et al. Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mrna sequencing. BMC Genomics. 2014;15:174. https://doi.org/10.1186/1471-2164-15-174.
WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd ed. WHO; 2016. https://iris.who.int/handle/10665/250677.
Hamzah SN, Avicor SW, Alias Z, Razak SA, Bakhori SK, Hsieh TC, et al. In vivo glutathione S-transferases superfamily proteome analysis: an insight into Aedes albopictus mosquitoes upon acute xenobiotic challenges. Insects. 2022;13:1028.