Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

Article 
ADS 

Google Scholar
 

Malic, E. et al. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2, 014002 (2018).

Article 

Google Scholar
 

Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2014).

Article 
ADS 

Google Scholar
 

Chand, S. B. et al. Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout. Nat. Commun. 14, 3712 (2023).

Article 
ADS 

Google Scholar
 

Park, K. D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

Article 
ADS 

Google Scholar
 

Lo, T. W. et al. Plasmonic nanocavity induced coupling and boost of dark excitons in monolayer WSe2 at room temperature. Nano Lett. 22, 1915–1921 (2022).

Article 
ADS 

Google Scholar
 

Zhou, J. et al. Near-field coupling with a nanoimprinted probe for dark exciton nanoimaging in monolayer WSe2. Nano Lett. 23, 4901–4907 (2023).

Article 
ADS 

Google Scholar
 

Hasz, K., Hu, Z., Park, K. D. & Raschke, M. B. Tip-enhanced dark exciton nanoimaging and local strain control in monolayer WSe2. Nano Lett. 23, 198–204 (2023).

Article 
ADS 

Google Scholar
 

Rahaman, M. et al. Observation of room-temperature dark exciton emission in nanopatch-decorated monolayer WSe2 on metal substrate. Adv. Opt. Mater. 9, 2101801 (2021).

Article 

Google Scholar
 

Wen, X. et al. Pathways of exciton triggered hot-carrier injection at plasmonic metal–transition metal dichalcogenide interface. Adv. Opt. Mater. 10, 2100070 (2022).

Article 

Google Scholar
 

Shan, H. et al. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light: Sci. Appl. 8, 9 (2019).

Article 
ADS 

Google Scholar
 

Deng, M. et al. Light-controlled near-field energy transfer in plasmonic metasurface coupled MoS2 monolayer. Small 16, 2003539 (2020).

Article 

Google Scholar
 

Brongersma, M. L. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

Article 
ADS 

Google Scholar
 

Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

Article 

Google Scholar
 

Liu, H. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 6, eabc9308 (2020).

Article 
ADS 

Google Scholar
 

He, Z. et al. Quantum plasmonic control of trions in a picocavity with monolayer WS2. Sci. Adv. 5, eaau8763 (2019).

Article 
ADS 

Google Scholar
 

Shi, J. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 8, 2001147 (2020).

Article 

Google Scholar
 

Li, Z. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun. 10, 2469 (2019).

Article 
ADS 

Google Scholar
 

Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).

Article 
ADS 

Google Scholar
 

Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).

Article 
ADS 

Google Scholar
 

He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020).

Article 
ADS 

Google Scholar
 

Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

Article 
ADS 

Google Scholar
 

Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

Article 
ADS 

Google Scholar
 

Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

Article 
ADS 

Google Scholar
 

Hoang, T. B. et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, 7788 (2015).

Article 
ADS 

Google Scholar
 

Huang, J., Akselrod, G. M., Ming, T., Kong, J. & Mikkelsen, M. H. Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities. ACS Photonics 5, 552–558 (2018).

Article 

Google Scholar
 

Robert, C. et al. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017).

Article 
ADS 

Google Scholar
 

Dang, J. et al. Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 4, 2 (2020).

Article 

Google Scholar
 

Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

Article 

Google Scholar
 

Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

Article 

Google Scholar
 

Li, Z. et al. Momentum-dark intervalley exciton in monolayer tungsten diselenide brightened via chiral phonon. ACS Nano 13, 14107–14113 (2019).

Article 

Google Scholar
 

Molas, M. R. et al. Probing and manipulating valley coherence of dark excitons in monolayer WSe2. Phys. Rev. Lett. 123, 096803 (2019).

Article 
ADS 

Google Scholar
 

Zhang, X. X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888 (2017).

Article 
ADS 

Google Scholar
 

Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

Article 
ADS 

Google Scholar
 

Li, Z. et al. Direct observation of gate-tunable dark trions in monolayer WSe2. Nano Lett. 19, 6886–6893 (2019).

Article 
ADS 

Google Scholar
 

Wang, L. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

Article 
ADS 

Google Scholar
 

Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

Article 
ADS 

Google Scholar
Â