Blancou, J., Chomel, B. B., Belotto, A. & Meslin, F. X. Emerging or re-emerging bacterial zoonoses: factors of emergence, surveillance and control. Vet. Res. 36, 507–522 (2005).
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
Shaheen, M. N. F. The concept of one health applied to the problem of zoonotic diseases. Rev. Med. Virol. 32, e2326 (2022).
Nandi, A. & Allen, L. J. S. Probability of a zoonotic spillover with seasonal variation. Infect. Dis. Model. 6, 514–531 (2021).
One Health High-Level Expert Panel (OHHLEP) One health: a new definition for a sustainable and healthy future. PLOS Pathog. 18, e1010537 (2022).
Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).
LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909 (2011).
Kruger, S. E., Lorah, P. A. & Okamoto, K. W. Mapping climate change’s impact on cholera infection risk in Bangladesh. PLOS Glob. Public Health 2, e0000711 (2022).
Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).
Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).
Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).
Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
Kariuki, S., Kering, K., Wairimu, C., Onsare, R. & Mbae, C. Antimicrobial resistance rates and surveillance in sub-Saharan Africa: where are we now?. Infect. Drug Resist. 15, 3589–3609 (2022).
Fatica, M. K. & Schneider, K. R. Salmonella and produce: survival in the plant environment and implications in food safety. Virulence 2, 573–579 (2011).
Liu, H., Whitehouse, C. A. & Li, B. Presence and persistence of Salmonella in water: the impact on microbial quality of water and food safety. Front. Public Health 6, 159 (2018).
Majowicz, S. E. et al. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 50, 882–889 (2010).
Hald, T. et al. World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS ONE 11, e0145839 (2016).
Reddy, E. A., Shaw, A. V. & Crump, J. A. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 417–432 (2010).
Feasey, N. A. et al. Three epidemics of invasive multidrug-resistant salmonella bloodstream infection in Blantyre, Malawi, 1998–2014. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 61, S363–S371 (2015).
Uche, I. V., MacLennan, C. A. & Saul, A. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl. Trop. Dis. 11, e0005118 (2017).
Marchello, C. S., Dale, A. P., Pisharody, S., Rubach, M. P. & Crump, J. A. A systematic review and meta-analysis of the prevalence of community-onset bloodstream infections among hospitalized patients in Africa and Asia. Antimicrob. Agents Chemother. 64, https://doi.org/10.1128/aac.01974-19 (2019).
Balasubramanian, R. et al. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum. Vaccines Immunother. 15, 1421–1426 (2018).
Park, S. E. et al. The genomic epidemiology of multi-drug resistant invasive non-typhoidal Salmonella in selected sub-Saharan African countries. BMJ Glob. Health 6, e005659 (2021).
Akullian, A. et al. Multi-drug resistant non-typhoidal Salmonella associated with invasive disease in western Kenya. PLoS Negl. Trop. Dis. 12, e0006156 (2018).
Feasey, N. A. et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat. Genet. 48, 1211–1217 (2016).
Kingsley, R. A. et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 19, 2279–2287 (2009).
Pulford, C. V. et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat. Microbiol. 6, 327–338 (2021).
Van Puyvelde, S. et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat. Commun. 10, 4280 (2019).
LEI International Policy et al. Dynamics of Food Systems in Sub-Saharan Africa: Implications for Consumption Patterns and Farmers’ Position in Food Supply Chains. https://research.wur.nl/en/publications/973b48c2-2933-4e13-825e-3815fe9be428; https://doi.org/10.18174/417176 (2017).
Nyokabi, S. et al. Informal value chain actors’ knowledge and perceptions about zoonotic diseases and biosecurity in Kenya and the importance for food safety and public health. Trop. Anim. Health Prod. 50, 509–518 (2018).
Cocker, D. et al. Investigating One Health risks for human colonisation with extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Malawian households: a longitudinal cohort study. Lancet Microbe S2666524723000629 https://doi.org/10.1016/S2666-5247(23)00062-9 (2023).
Hassell, J. M. et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study. Lancet Planet. Health 3, e259–e269 (2019).
Pathogenwatch | A Global Platform for Genomic Surveillance. https://pathogen.watch/.
Kariuki, S., Gordon, M. A., Feasey, N. & Parry, C. M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33, C21–C29 (2015).
Parisi, A. et al. The role of animals as a source of antimicrobial resistant nontyphoidal Salmonella causing invasive and non-invasive human disease in Vietnam. Infect. Genet. Evol. 85, 104534 (2020).
Musicha, P. et al. Trends in antimicrobial resistance in bloodstream infection isolates at a large urban hospital in Malawi (1998–2016): a surveillance study. Lancet Infect. Dis. 17, 1042–1052 (2017).
Robertson, J. & Nash, J. H. E. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genomics 4, e000206 (2018).
Seemann, T. ABRicate. Github https://github.com/tseemann/abricate. (2021).
Tonkin-Hill, G. et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 21, 180 (2020).
Thorpe, H. A. et al. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat. Microbiol. 7, 2054–2067 (2022).
Day, M. J. et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect. Dis. 19, 1325–1335 (2019).
Ludden, C. et al. One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 10, https://doi.org/10.1128/mbio.02693-18 (2019).
Gouliouris, T. et al. Genomic surveillance of enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio 9, e01780-18 (2018).
Muloi, D. M. et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat. Microbiol. 7, 581–589 (2022).
Fukushima, K., Yanagisawa, N., Sekiya, N. & Izumiya, H. Bacteremia caused by Salmonella Poona in a healthy adult in Tokyo, Japan. Intern. Med. 59, 289–292 (2020).
Lang, B. Y., Varman, M., Reindel, R. & Hasley, B. P. Salmonella Gaminara osteomyelitis and septic arthritis in an infant with exposure to bearded dragon. Infect. Dis. Clin. Pract. 15, 348–350 (2007).
Makendi, C. et al. A phylogenetic and phenotypic analysis of Salmonella enterica serovar Weltevreden, an emerging agent of diarrheal disease in tropical regions. PLoS Negl. Trop. Dis. 10, e0004446 (2016).
Beyene, G. et al. Multidrug resistant Salmonella Concord is a major cause of salmonellosis in children in Ethiopia. J. Infect. Dev. Ctries. 5, 023–033 (2011).
Nutrition, C. for F. S. & A. Outbreak Investigation of Salmonella Oranienburg: Whole, Fresh Onions (October 2021). FDA (2022).
Mankhomwa, J. et al. A qualitative study of antibiotic use practices in intensive small-scale farming in urban and peri-urban Blantyre, Malawi: implications for antimicrobial resistance. Front. Vet. Sci. 9, 876513 (2022).
Post, A. S. et al. Supporting evidence for a human reservoir of invasive non-Typhoidal Salmonella from household samples in Burkina Faso. PLoS Negl. Trop. Dis. 13, e0007782 (2019).
Koolman, L. et al. Case-control investigation of invasive Salmonella disease in Malawi reveals no evidence of environmental or animal transmission of invasive strains, and supports human to human transmission. PLoS Negl. Trop. Dis. 16, e0010982 (2022).
Crump, J. A. et al. Investigating the meat pathway as a source of human nontyphoidal Salmonella bloodstream infections and diarrhea in East Africa. Clin. Infect. Dis. 73, e1570–e1578 (2021).
Hassell, J. M. et al. Epidemiological connectivity between humans and animals across an urban landscape. Proc. Natl Acad. Sci. USA 120, e2218860120 (2023).
Octavia, S., Wang, Q., Tanaka, M. M., Sintchenko, V. & Lan, R. Genomic variability of serial human isolates of Salmonella enterica serovar Typhimurium associated with prolonged carriage. J. Clin. Microbiol. 53, 3507–3514 (2015).
Chidziwisano, K., Slekiene, J., Kumwenda, S., Mosler, H.-J. & Morse, T. Toward complementary food hygiene practices among child caregivers in rural Malawi. Am. J. Trop. Med. Hyg. 101, 294–303 (2019).
Musoke, D. et al. The role of Environmental Health in preventing antimicrobial resistance in low- and middle-income countries. Environ. Health Prev. Med. 26, 100 (2021).
Now 8 billion and counting: Where the world’s population has grown most and why that matters |. UNCTAD https://unctad.org/data-visualization/now-8-billion-and-counting-where-worlds-population-has-grown-most-and-why (2022).
FAO—News Article: Small family farmers produce a third of the world’s food. https://www.fao.org/news/story/en/item/1395127/icode/.
Paediatrics, R. C., Committee, C. H. & HULL, P. S. Guidelines for the ethical conduct of medical research involving children. Arch. Dis. Child. 82, 177–182 (2000).
Welcome to the QGIS project! https://www.qgis.org/en/site/.
Chipeta, M., Terlouw, D., Phiri, K. & Diggle, P. Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure. Environmetrics 28, e2425 (2017).
Hartung, C. et al. Open data kit: tools to build information services for developing regions. in Proceedings of the 4th ACM/IEEE International Conference on Information and Communication Technologies and Development 1–12. https://doi.org/10.1145/2369220.2369236 (Association for Computing Machinery, 2010).
De Medici, D. et al. Evaluation of DNA extraction methods for use in combination with SYBR Green I real-time PCR To detect Salmonella enterica serotype enteritidis in poultry. Appl. Environ. Microbiol. 69, 3456–3461 (2003).
Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).
Custom DNA Oligos. https://www.sigmaaldrich.com/GB/en/custom-pdp/061ac088-00b9-47c0-8a48-faab9ca7f281.
Babraham Bioinformatics—FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Kraken: ultrafast metagenomic sequence classification using exact alignments | Genome Biology | Full Text. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r46.
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).
assembly-stats. Pathogen Informatics, Wellcome Sanger Institute. Github https://github.com/sanger-pathogens/assembly-stats. (2022).
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinforma. Oxf. Engl. 29, 1072–1075 (2013).
Yoshida, C. E. et al. The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE. 11, e0147101 (2016).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments | Microbiology Society. https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.000056.
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293 (2018).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293–W296 (2021).
Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinforma. 69, e96 (2020).
AMRFinderPlus—Pathogen Detection—NCBI. https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/.
Feldgarden, M. et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11, 12728 (2021).
Harris, S. Pairwise Difference Count. https://github.com/simonrharris/pairwise_difference_count. (2020).
Seemann, T. snp-dists. https://github.com/tseemann/snp-dists (2021).
igraph—Network analysis software. https://igraph.org/.
Yu, D., Zhao, Y., Yin, C., Liang, F. & Chen, W. A network analysis of the association between intergroup contact and intergroup relations. Psychol. Res. Behav. Manag. 15, 51–69 (2022).
R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2021).
Wilson, C. Circulation of Salmonella spp. between humans, animals and the environment in animal-owning households in Malawi. (2025).
NIAID Visual & Medical Arts. (10/7/2024). Lizard Outline. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/302.
NIAID Visual & Medical Arts. (3/27/2025). Sunflower. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/620.
NIAID Visual & Medical Arts. (4/24/2025). Goat. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/636.
NIAID Visual & Medical Arts. (10/7/2024). Duck Silhouette. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/135.
NIAID Visual & Medical Arts. (10/7/2024). Domestic Chicken. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/131.
NIAID Visual & Medical Arts. (3/12/2025). Domestic Dog. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/594.
NIAID Visual & Medical Arts. (10/7/2024). Lab Mouse. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/279.
NIAID Visual & Medical Arts. (10/7/2024). Unisex Icon. NIAID NIH BIOART Source. Bioart.Niaid.Nih.Gov/Bioart/13.