Farley, K. A. et al. Mars 2020 mission overview. Space Sci. Rev. https://doi.org/10.1007/s11214-020-00762-y (2020).

Farley, K. A. et al. Aqueously altered igneous rocks sampled on the floor of Jezero Crater, Mars. Science 377, eabo2196 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Simon, J. I. et al. Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance rover. J. Geophys. Res. Planets https://doi.org/10.1029/2022JE007474 (2023).

Mangold, N. et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero Crater, Mars. Science 374, 711–717 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Stack, K. M. et al. Sedimentology and stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2023JE008187 (2024).

Bosak, T. et al. Astrobiological potential of rocks acquired by the Perseverance rover at a sedimentary fan front in Jezero Crater, Mars. AGU Adv. https://doi.org/10.1029/2024AV001241 (2024).

Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus https://doi.org/10.1016/j.icarus.2019.113526 (2020).

Goudge, T. A., Mustard, J. F., Head, J. W., Fassett, C. I. & Wiseman, S. M. Assessing the mineralogy of the watershed and fan deposits of the Jezero Crater paleolake system, Mars. J. Geophys. Res. Planets 120, 775–808 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Steele, A. et al. Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard. Meteorit. Planet. Sci. 42, 1549–1566 (2007).

Article 
ADS 
CAS 

Google Scholar
 

Steele, A. et al. Macromolecular carbon in Martian basalts. Meteorit. Planet. Sci. 47, A357–A357 (2012).


Google Scholar
 

Bhartia, R. et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation. Space Sci. Rev. 217, 58 (2021).

Article 
ADS 

Google Scholar
 

Scheller, E. L. et al. Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars. Sci. Adv. 10, eadm8241 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones, M. W. M. et al. In situ crystallographic mapping constrains sulfate precipitation and timing in Jezero Crater, Mars. Sci. Adv. 11, eadt3048 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Orenstein, B. J. et al. In-situ mapping of monocrystalline regions on Mars. Icarus 420, 116202 (2024).

Article 
CAS 

Google Scholar
 

Tice, M. M. et al. Alteration history of Seitah Formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction, and multispectral imaging on Mars. Sci. Adv. 8, eabp9084 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vaniman, D. T. et al. Gypsum, bassanite, and anhydrite at Gale Crater, Mars. Am. Mineral. 103, 1011–1020 (2018).

Article 
ADS 

Google Scholar
 

Hardie, L. A. Gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–17 (1967).

CAS 

Google Scholar
 

Babechuk, M. G., Widdowson, M. & Kamber, B. S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 363, 56–75 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Burns, R. G. & Fisher, D. S. Iron–sulfur mineralogy of Mars—magmatic evolution and chemical-weathering products. J. Geophys. Res. Solid Earth 95, 14415–14421 (1990).

Article 

Google Scholar
 

Henneke, J. et al. A radiometric correction method and performance characteristics for PIXL’s multispectral analysis using LEDs. Space Sci. Rev. https://doi.org/10.1007/s11214-023-01014-5 (2023).

Rampe, E. B., Morris, R. V., Archer, P. D., Agresti, D. G. & Ming, D. W. Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations. Am. Mineral. 101, 678–689 (2016).

Article 
ADS 

Google Scholar
 

Roncal-Herrero, T., Rodríguez-Blanco, J. D., Benning, L. G. & Oelkers, E. H. Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Crys. Growth Des. 9, 5197–5205 (2009).

Article 
CAS 

Google Scholar
 

Nriagu, J. & Dell, C. Diagenetic formation of iron phosphates in recent lake sediments. Am. Mineral. 59, 934–946 (1974).

CAS 

Google Scholar
 

Treiman, A. H. et al. Manganese–iron phosphate nodules at the Groken Site, Gale Crater, Mars. Minerals https://doi.org/10.3390/min13091122 (2023).

Hausrath, E. M. et al. Phosphates on Mars and their importance as igneous, aqueous, and astrobiological indicators. Minerals https://doi.org/10.3390/min14060591 (2024).

Kizovski, T. et al. Fe-phosphates in Jezero Crater as evidence for an ancient habitable environment on Mars. Nat. Commun. 16, 6470 (2025).

Miller, W. P., Zelazny, L. W. & Martens, D. C. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37, 1–13 (1986).

Article 
ADS 
CAS 

Google Scholar
 

Torres, R., Blesa, M. A. & Matijević, E. Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids. J. Colloid Interface Sci. 134, 475–485 (1990).

Article 
ADS 
CAS 

Google Scholar
 

Ionescu, D., Heim, C., Polerecky, L., Thiel, V. & De Beer, D. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions. Geomicrobiol. J. 32, 221–230 (2015).

Article 
CAS 

Google Scholar
 

Eigenbrode, J. L. et al. Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360, 1096–1101 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Steele, A. et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 375, 172–177 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Flynn, G. J., Nittler, L. R. & Engrand, C. Composition of cosmic dust: sources and implications for the early Solar System. Elements 12, 177–183 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).

Article 
ADS 
CAS 

Google Scholar
 

Afonso, M. D. & Stumm, W. Reductive dissolution of iron(III) (hydr)oxides by hydrogen-sulfide. Langmuir 8, 1671–1675 (1992).

Article 

Google Scholar
 

Canfield, D. E., Raiswell, R. & Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).

Article 
ADS 
CAS 

Google Scholar
 

Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Machel, H. G. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 140, 143–175 (2001).

Article 
ADS 
CAS 

Google Scholar
 

Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

McSween, H. Y. Jr., Labotka, T. C. & Viviano-Beck, C. E. Metamorphism in the Martian crust. Meteorit. Planet. Sci. 50, 590–603 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Vuillemin, A. et al. Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia. Biogeosciences 17, 1955–1973 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Hsu, T. W., Jiang, W. T. & Wang, Y. S. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan. J. Asian Earth Sci. 89, 88–97 (2014).

Article 
ADS 

Google Scholar
 

Liu, J. R. et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea. Biogeosciences 15, 6329–6348 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Rickard, D., Roberts, A. P. & Navrotsky, A. Sedimentary greigite formation. Am. J. Sci. https://doi.org/10.2475/001c.121855 (2024).

Picard, A., Gartman, A., Clarke, D. R. & Girguis, P. R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. Cosmochim. Acta 220, 367–384 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Xu, Z. Y. et al. Sulfidation-reoxidation enhances heavy metal immobilization by vivianite. Water Res. 263, 122195 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Marin-Carbonne, J. et al. In situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 18, 306–325 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Thomson, J., Higgs, N. C. & Colley, S. A geochemical investigation of reduction haloes developed under turbidites in brown clay. Mar. Geol. 89, 315–330 (1989).

Article 
ADS 
CAS 

Google Scholar
 

Spinks, S. C., Parnell, J. & Bowden, S. A. Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record. Int. J. Astrobiol. 9, 209–216 (2010).

Article 
ADS 
CAS 

Google Scholar
 

Kawahara, H. et al. Bleached-spot formation in Fe-oxide-rich rock by inorganic process. Chem. Geol. 609, 121049 (2022).

Article 
CAS 

Google Scholar
 

Des Marais, D. J. et al. The NASA astrobiology roadmap. Astrobiology 3, 219–235 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Gillen, C., Jeancolas, C., McMahon, S. & Vickers, P. The call for a new definition of biosignature. Astrobiology 23, 1228–1237 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mustard, J. F. et al. Report of the Mars 2020 Science Definition Team (Mars Exploration Program Analysis Group, 2013).

Hamran, S.-E. et al. Radar Imager for Mars’ Subsurface Experiment—RIMFAX. Space Sci. Rev. 216, 128 (2020).

Article 
ADS 

Google Scholar
 

Allwood, A. C. et al. PIXL: Planetary Instrument for X-ray Lithochemistry. Space Sci. Rev. 216, 134 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).

Article 
ADS 

Google Scholar
 

Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 4 (2021).

Article 
ADS 
PubMed 

Google Scholar
 

Bell, J. F. et al. The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Sci. Rev. 217, 24 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Moeller, R. C. et al. The Sampling and Caching Subsystem (SCS) for the scientific exploration of Jezero Crater by the Mars 2020 Perseverance rover. Space Sci. Rev. 217, 5 (2020).

Article 
ADS 

Google Scholar
 

Sharma, S. et al. Diverse organic-mineral associations in Jezero Crater, Mars. Nature 619, 724–72 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Osterhout, J. T., Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D. & Williford, K. H. Deep-UV Raman spectroscopy of carbonaceous Precambrian microfossils: insights into the search for past life on Mars. Astrobiology 22, 1239–1254 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jakubek, R. S. et al. Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) spectrometer onboard the rover enables identification of a ubiquitous Martian spectral component. Appl. Spectrosc. https://doi.org/10.1177/00037028241280081 (2024).

Heirwegh, C. M., Elam, W. T., O’Neil, L. P., Sinclair, K. P. & Das, A. The focused beam X-ray fluorescence elemental quantification software package PIQUANT. Spectrochim. Acta Part B 196, 106520 (2022).

Article 
CAS 

Google Scholar
 

Schmidt, M. E. et al. Diverse and highly differentiated lava suite in Jezero Crater, Mars: constraints on intracrustal magmatism revealed by Mars 2020 PIXL. Sci. Adv. 11, eadr2613 (2025).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chadwick, O. A., Brimhall, G. H. & Hendricks, D. M. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390 (1990).

Article 
ADS 

Google Scholar
 

Liu, Y. et al. An olivine cumulate outcrop on the floor of Jezero Crater, Mars. Science 377, 1513–151 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1914).


Google Scholar
 

Wright, A. P., Nemere, P., Galvin, A., Chau, D. H. & Davidoff, S. Lessons from the development of an anomaly detection interface on the Mars Perseverance Rover using the ISHMAP framework. In Proc. 28th International Conference on Intelligent User Interfaces 91–105 (Association for Computing Machinery, 2023).

Schurman, D. et al. PIXELATE: novel visualization and computational methods for the analysis of astrobiological spectroscopy data. In AbSciCon 2019, 401-8 (American Geophysical Union, 2019).

Davidoff, S. et al. PIXLISE spectroscopy analysis software: released versions for published analyses. OSF https://doi.org/10.17605/OSF.IO/URE2F (2024).