Yuan Y, Gao M. Jumbo bacteriophages: an overview. Front Microbiol. 2017;8:403.

PubMed 
PubMed Central 

Google Scholar
 

Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across earth’s ecosystems. Nature. 2020;578:425–31.

PubMed 
PubMed Central 

Google Scholar
 

Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JK, et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science. 2017;355:194–7.

PubMed 
PubMed Central 

Google Scholar
 

Laughlin TG, Deep A, Prichard AM, Seitz C, Gu Y, Enustun E, et al. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature. 2022;608:429–35.

PubMed 
PubMed Central 

Google Scholar
 

Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, et al. A bacteriophage nucleus-like compartment shields DNA from crispr nucleases. Nature. 2020;577:244–8.

PubMed 

Google Scholar
 

Nguyen KT, Sugie J, Khanna K, Egan ME, Birkholz EA, Lee J, et al. Selective transport of fluorescent proteins into the phage nucleus. PLoS One. 2021;16:e0251429.

PubMed 
PubMed Central 

Google Scholar
 

Chaikeeratisak V, Khanna K, Nguyen KT, Egan ME, Enustun E, Armbruster E, et al. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. Sci Adv. 2022;8:eabj9670.

PubMed 
PubMed Central 

Google Scholar
 

Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S, Karaulov A, et al. Phage phikz-the first of giants. Viruses. 2021. https://doi.org/10.3390/v13020149

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wu W, Thomas JA, Cheng N, Black LW, Steven AC. Bubblegrams reveal the inner body of bacteriophage phikz. Science. 2012;335:182.

PubMed 
PubMed Central 

Google Scholar
 

Thomas JA, Weintraub ST, Wu W, Winkler DC, Cheng N, Steven AC, et al. Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant pseudomonas aeruginosa phage phikz. Mol Microbiol. 2012;84:324–39.

PubMed 
PubMed Central 

Google Scholar
 

Mozumdar D, Fossati A, Stevenson E, Guan J, Nieweglowska E, Rao S, et al. Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection. Cell Host Microbe. 2024;32(1050–58):e7.


Google Scholar
 

Gerovac M, Chihara K, Wicke L, Bottcher B, Lavigne R, Vogel J. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat Microbiol. 2024;9:787–800.

PubMed 
PubMed Central 

Google Scholar
 

Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, et al. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A. 2024;121:e2321190121.

PubMed 
PubMed Central 

Google Scholar
 

Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, et al. A phage nucleus-associated rna-binding protein is required for jumbo phage infection. Nucleic Acids Res. 2024;52:4440–55.

PubMed 
PubMed Central 

Google Scholar
 

Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, et al. Viral capsid trafficking along treadmilling tubulin filaments in bacteria. Cell. 2019;177(1771–80):e12.


Google Scholar
 

Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, et al. A jumbo phage that forms a nucleus-like structure evades crispr-cas DNA targeting but is vulnerable to type iii rna-based immunity. Nat Microbiol. 2020;5:48–55.

PubMed 

Google Scholar
 

Birkholz EA, Laughlin TG, Armbruster E, Suslov S, Lee J, Wittmann J, et al. A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in e. Coli. Cell Rep. 2022;40:111179.

PubMed 
PubMed Central 

Google Scholar
 

Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy AE, et al. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage ray. Cell Rep. 2023;42:112432.

PubMed 
PubMed Central 

Google Scholar
 

Wang W, Ren J, Tang K, Dart E, Ignacio-Espinoza JC, Fuhrman JA, et al. A network-based integrated framework for predicting virus-prokaryote interactions. NAR Genom Bioinform. 2020;2:lqaa044.

PubMed 
PubMed Central 

Google Scholar
 

Li Y, Guan J, Hareendranath S, Crawford E, Agard DA, Makarova KS et al. A family of novel immune systems targets early infection of nucleus-forming jumbo phages. bioRxiv. 2022:2022.09.17.508391. https://doi.org/10.1101/2022.09.17.508391.

Wakui D, Nagashima G, Otsuka Y, Takada T, Ueda T, Tanaka Y, et al. A case of meningitis due to neisseria subflava after ventriculostomy. J Infect Chemother. 2012;18:115–8.

PubMed 

Google Scholar
 

Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21:1638–46.

PubMed 
PubMed Central 

Google Scholar
 

Shkoporov AN, Hill C. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe. 2019;25:195–209.

PubMed 

Google Scholar
 

Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Erwinia phage asesino is a nucleus-forming phage that lacks phuz. Sci Rep. 2025;15:1692.

PubMed 
PubMed Central 

Google Scholar
 

Chaikeeratisak V, Nguyen K, Egan ME, Erb ML, Vavilina A, Pogliano J. The phage nucleus and tubulin spindle are conserved among large pseudomonas phages. Cell Rep. 2017;20:1563–71.

PubMed 
PubMed Central 

Google Scholar
 

Mann S, Chen YP. Bacterial genomic g+c composition-eliciting environmental adaptation. Genomics. 2010;95:7–15.

PubMed 

Google Scholar
 

Kakasis A, Panitsa G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents. 2019;53:16–21.

PubMed 

Google Scholar
 

Devoto AE, Santini JM, Olm MR, Anantharaman K, Munk P, Tung J, et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat Microbiol. 2019;4:693–700.

PubMed 
PubMed Central 

Google Scholar
 

Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, Ahearne TE, et al. Reproductive mode and the evolution of genome size and structure in caenorhabditis nematodes. PLoS Genet. 2015;11:e1005323.

PubMed 
PubMed Central 

Google Scholar
 

Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974;78:737–56.

PubMed 
PubMed Central 

Google Scholar
 

Murphy J, Klumpp J, Mahony J, O’Connell-Motherway M, Nauta A, van Sinderen D. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity. BMC Genomics. 2014;15:831.

PubMed 
PubMed Central 

Google Scholar
 

Bobonis J, Mitosch K, Mateus A, Karcher N, Kritikos G, Selkrig J, et al. Bacterial retrons encode phage-defending tripartite toxin-antitoxin systems. Nature. 2022;609:144–50.

PubMed 
PubMed Central 

Google Scholar
 

Leavitt A, Yirmiya E, Amitai G, Lu A, Garb J, Herbst E, et al. Viruses inhibit Tir gcadpr signalling to overcome bacterial defence. Nature. 2022;611:326–31.

PubMed 

Google Scholar
 

Popova AV, Shneider MM, Arbatsky NP, Kasimova AA, Senchenkova SN, Shashkov AS, et al. Specific interaction of novel friunavirus phages encoding tailspike depolymerases with corresponding Acinetobacter baumannii capsular types. J Virol. 2021. https://doi.org/10.1128/JVI.01714-20.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang B, Zheng J, Yin Y. Acafinder: genome mining for anti-crispr-associated genes. mSystems. 2022;7:e0081722.

PubMed 

Google Scholar
 

Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, Leavitt A, et al. Phage anti-cbass and anti-pycsar nucleases subvert bacterial immunity. Nature. 2022;605:522–6.

PubMed 
PubMed Central 

Google Scholar
 

Azam AH, Chihara K, Kondo K, Nakamura T, Ojima S, Tamura A et al. Viruses encode trna and anti-retron to evade bacterial immunity. bioRxiv. 2023:2023.03.15.532788. https://doi.org/10.1101/2023.03.15.532788.

Murphy KC, Lewis LJ. Properties of Escherichia coli expressing bacteriophage p22 abc (anti-recbcd) proteins, including inhibition of chi activity. J Bacteriol. 1993;175(6):1756–66.

PubMed 
PubMed Central 

Google Scholar
 

Camargo AP, Nayfach S, Chen IA, Palaniappan K, Ratner A, Chu K, et al. Img/vr v4: An expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata. Nucleic Acids Res. 2023;51:D733–43.

PubMed 

Google Scholar
 

Weinheimer AR, Aylward FO. Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. ISME J. 2022;16(6):1657–67.

PubMed 
PubMed Central 

Google Scholar
 

Nayfach S, Paez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.

PubMed 
PubMed Central 

Google Scholar
 

Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell. 2021;184(1098–109):e9.


Google Scholar
 

Benler S, Yutin N, Antipov D, Rayko M, Shmakov S, Gussow AB, et al. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome. 2021;9:78.

PubMed 
PubMed Central 

Google Scholar
 

Terzian P, Olo Ndela E, Galiez C, Lossouarn J, Perez Bucio RE, Mom R, et al. Phrog: Families of prokaryotic virus proteins clustered using remote homology. NAR Genom Bioinform. 2021;3:lqab067.

PubMed 
PubMed Central 

Google Scholar
 

Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic virus orthologous groups (pvogs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491-8.

PubMed 

Google Scholar
 

Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. Eggnog 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286-93.

PubMed 

Google Scholar
 

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.

PubMed 

Google Scholar
 

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. Kofamkoala: kegg ortholog assignment based on profile hmm and adaptive score threshold. Bioinformatics. 2020;36:2251–2.

PubMed 

Google Scholar
 

Katoh K, Standley DM. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

PubMed 
PubMed Central 

Google Scholar
 

Eddy SR. Accelerated profile hmm searches. PLoS Comput Biol. 2011;7:e1002195.

PubMed 
PubMed Central 

Google Scholar
 

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

PubMed 
PubMed Central 

Google Scholar
 

Shen W, Le S, Li Y, Hu F. Seqkit: a cross-platform and ultrafast toolkit for fasta/q file manipulation. PLoS One. 2016;11:e0163962.

PubMed 
PubMed Central 

Google Scholar
 

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–6.

PubMed 
PubMed Central 

Google Scholar
 

van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, et al. Fast and accurate protein structure search with foldseek. Nat Biotechnol. 2024;42(2):243–6.

PubMed 

Google Scholar
 

Olm MR, Brown CT, Brooks B, Banfield JF. Drep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

PubMed 
PubMed Central 

Google Scholar
 

Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S, Kyrpides NC. Checkv assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol. 2021;39:578–85.

PubMed 

Google Scholar
 

Kieft K, Zhou Z, Anantharaman K. Vibrant: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90.

PubMed 
PubMed Central 

Google Scholar
 

Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, et al. Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. Nucleic Acids Res. 2025. https://doi.org/10.1093/nar/gkae1171.

Article 
PubMed 

Google Scholar
 

Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.

PubMed 

Google Scholar
 

Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Neron B, et al. Crisprcasfinder, an update of crisrfinder, includes a portable version, enhanced performance and integrates search for cas proteins. Nucleic Acids Res. 2018;46:W246–51.

PubMed 
PubMed Central 

Google Scholar
 

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. Blast+: architecture and applications. BMC Bioinformatics. 2009;10:421.

PubMed 
PubMed Central 

Google Scholar
 

Luo XQ, Wang P, Li JL, Ahmad M, Duan L, Yin LZ, et al. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome. 2022;10:190.

PubMed 
PubMed Central 

Google Scholar
 

Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-the good, the bad, and the ugly. Virus Evol. 2024;10:vead083.

PubMed 

Google Scholar
 

Shang J, Sun Y. Cherry: a computational method for accurate prediction of virus-prokaryotic interactions using a graph encoder-decoder model. Brief Bioinform. 2022. https://doi.org/10.1093/bib/bbac182.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Amgarten D, Iha BKV, Piroupo CM, da Silva AM, Setubal JC. Vhulk, a new tool for bacteriophage host prediction based on annotated genomic features and neural networks. PHAGE. 2022;3:204–12.

PubMed 
PubMed Central 

Google Scholar
 

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

PubMed 
PubMed Central 

Google Scholar
 

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. Iq-tree 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

PubMed 
PubMed Central 

Google Scholar
 

Fu L, Niu B, Zhu Z, Wu S, Li W. Cd-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.

PubMed 
PubMed Central 

Google Scholar
 

Price MN, Dehal PS, Arkin AP. Fasttree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.

PubMed 
PubMed Central 

Google Scholar
 

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

PubMed 

Google Scholar
 

Ding W, Baumdicker F, Neher RA. Panx: pan-genome analysis and exploration. Nucleic Acids Res. 2018;46:e5.

PubMed 

Google Scholar
 

Chan PP, Lowe TM. Trnascan-se: Searching for trna genes in genomic sequences. Methods Mol Biol. 2019;1962:1–14.

PubMed 
PubMed Central 

Google Scholar
 

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.

PubMed 
PubMed Central 

Google Scholar
 

Lu J, Salzberg SL. Skewit: the skew index test for large-scale GC skew analysis of bacterial genomes. PLoS Comput Biol. 2020;16:e1008439.

PubMed 
PubMed Central 

Google Scholar
 

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.

PubMed 
PubMed Central 

Google Scholar
 

Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176(649–62):e20.


Google Scholar
 

Morais S, Winkler S, Zorea A, Levin L, Nagies FSP, Kapust N, et al. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science. 2024;383:eadj9223.

PubMed 
PubMed Central 

Google Scholar
 

Li R, Wang Y, Hu H, Tan Y, Ma Y. Metagenomic analysis reveals unexplored diversity of archaeal virome in the human gut. Nat Commun. 2022;13:7978.

PubMed 
PubMed Central 

Google Scholar
 

Li D, Liu CM, Luo R, Sadakane K, Lam TW. Megahit: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6.

PubMed 

Google Scholar
 

Kolmogorov M, Raney B, Paten B, Pham S. Ragout-a reference-assisted assembly tool for bacterial genomes. Bioinformatics. 2014;30:i302-9.

PubMed 
PubMed Central 

Google Scholar
 

Chen T, Liu YX, Huang L. Imagegp: an easy-to-use data visualization web server for scientific researchers. Imeta. 2022;1:e5.

PubMed 
PubMed Central 

Google Scholar
 

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.

PubMed 

Google Scholar
 

Letunic I, Bork P. Interactive tree of life (itol) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.

PubMed 
PubMed Central 

Google Scholar