Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

Article 

Google Scholar
 

Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

Article 

Google Scholar
 

Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14337 (2020).

Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Chang. 12, 1160–1167 (2022).

Article 

Google Scholar
 

Zhou, S., Yu, B. & Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9, eabo1638 (2023).

Article 

Google Scholar
 

Gu, B., Zhou, S., Yu, B., Findell, K. L. & Lintner, B. R. Multifaceted changes in water availability with a warmer climate. npj Clim. Atmos. Sci. 8, 31 (2025).

Article 

Google Scholar
 

Budyko, M. I. Climate and Life (Academic Press, 1974).

Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

Article 

Google Scholar
 

Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

Article 

Google Scholar
 

Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

Article 
CAS 

Google Scholar
 

Koutsoyiannis, D. Revisiting the global hydrological cycle: is it intensifying? Hydrol. Earth Syst. Sci. 24, 3899–3932 (2020).

Article 

Google Scholar
 

Milly, P. C. D. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).

Article 

Google Scholar
 

Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).

Article 

Google Scholar
 

Zhou, S., Yu, B., Huang, Y. & Wang, G. The complementary relationship and generation of the Budyko functions. Geophys. Res. Lett. 42, 1781–1790 (2015).

Article 

Google Scholar
 

Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land‐surface models and climatic dryness metrics disagree? Earth’s Future 10, e2022EF002814 (2022).

Article 

Google Scholar
 

Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

Article 
CAS 

Google Scholar
 

Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44 (2019).

Article 

Google Scholar
 

Zhou, S., Yu, B., Lintner, B. R., Findell, K. L. & Zhang, Y. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Chang. 13, 442–449 (2023).

Article 
CAS 

Google Scholar
 

Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).

Article 
CAS 

Google Scholar
 

Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 11, 38–44 (2021).

Article 

Google Scholar
 

Zhou, S. et al. Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nat. Commun. 13, 5756 (2022).

Article 
CAS 

Google Scholar
 

Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

Article 

Google Scholar
 

Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

Article 

Google Scholar
 

Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).

Article 
CAS 

Google Scholar
 

Zhao, L. et al. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 23, 359–369 (2013).

Article 

Google Scholar
 

Zhang, K., Kimball, J. S. & Running, S. W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 3, 834–853 (2016).

Article 

Google Scholar
 

Kim, Y., Garcia, M. & Johnson, M. S. Land–atmosphere coupling constrains increases to potential evaporation in a warming climate: implications at local and global scales. Earth’s Future 11, e2022EF002886 (2023).

Article 

Google Scholar
 

Zhang, Y. et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023).

Article 

Google Scholar
 

Yang, H. & Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff: derivation of climate elasticity of runoff. Water Resour. Res. 47, W07526 (2011).

Article 

Google Scholar
 

Zhou, S. et al. A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship. Water Resour. Res. 52, 7163–7177 (2016).

Article 

Google Scholar
 

Shuttleworth, W. J. In Handbook of Hydrology (McGraw-Hill Education, 1993).

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (Food and Agriculture Organization of the United Nations, 1998).

Zhou, S. & Yu, B. Physical basis of the potential evapotranspiration and its estimation over land. J. Hydrol. 641, 131825 (2024).

Article 

Google Scholar
 

Zhou, S. & Yu, B. Reconciling the discrepancy in projected global dryland expansion in a warming world. Glob. Change Biol. 31, e70102 (2025).

Article 
CAS 

Google Scholar
 

Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

Article 

Google Scholar
 

Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

Article 
CAS 

Google Scholar
 

Brutsaert, W. A generalized complementary principle with physical constraints for land‐surface evaporation. Water Resour. Res. 51, 8087–8093 (2015).

Article 

Google Scholar
 

Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophys. Res. Lett. 34, L02405 (2007).

Article 

Google Scholar
 

Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

Article 

Google Scholar
 

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

Article 

Google Scholar
 

Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).

Article 

Google Scholar
 

Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev. 100, 81–92 (1972).

Article 

Google Scholar
 

McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Chang. 12, 604–606 (2022).

Article 

Google Scholar
 

Berg, A. Bridging the gap between simple metrics and model simulations of climate change impacts on land hydrology. Earth’s Future 10, e2022EF003259 (2022).

Article 

Google Scholar
 

Sun, R., Hernández, F., Liang, X. & Yuan, H. A calibration framework for high-resolution hydrological models using a multiresolution and heterogeneous strategy. Water Resour. Res. 56, e2019WR026541 (2020).

Article 

Google Scholar
 

Pandi, D., Kothandaraman, S. & Kuppusamy, M. Hydrological models: a review. Int. J. Hydrol. Sci. Technol. 12, 223–242 (2021).

Article 

Google Scholar
 

Ma, N., Szilagyi, J. & Zhang, Y. Calibration‐free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 57, e2021WR029691 (2021).

Article 

Google Scholar
 

Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

Article 
CAS 

Google Scholar
 

Wei, H. et al. Direct vegetation response to recent CO2 rise shows limited effect on global streamflow. Nat. Commun. 15, 9423 (2024).

Article 
CAS 

Google Scholar
 

Zhou, S. et al. Large divergence in tropical hydrological projections caused by model spread in vegetation responses to elevated CO2. Earth’s Future 10, e2021EF002457 (2022).

Article 

Google Scholar
 

Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

Article 
CAS 

Google Scholar
 

Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

Article 

Google Scholar
 

Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 11, 331–337 (2021).

Article 

Google Scholar
 

Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating palmer drought severity index. J. Clim. 17, 2335–2351 (2004).

Article 

Google Scholar
 

Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

Article 

Google Scholar
 

Free vector and raster map data. Natural Earth http://www.naturalearthdata.com (2024).

Chow, V. T., Maidment, D. R. & Mays, L. W. Applied Hydrology (McGraw-Hill Book Company, 1988).

Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Series A 192, 120–145 (1948).

Qualls, R. J. & Crago, R. D. Graphical interpretation of wet surface evaporation equations. Water Resour. Res. 56, e2019WR026766 (2020).

Article 

Google Scholar
 

Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 44, W03410 (2008).

Article 

Google Scholar
 

Padrón, R. S., Gudmundsson, L., Greve, P. & Seneviratne, S. I. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis: review of surface water balance controls. Water Resour. Res. 53, 9659–9678 (2017).

Article 

Google Scholar
 

Xu, X., Liu, W., Scanlon, B. R., Zhang, L. & Pan, M. Local and global factors controlling water–energy balances within the Budyko framework. Geophys. Res. Lett. 40, 6123–6129 (2013).

Article 

Google Scholar
 

Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).

Article 
CAS 

Google Scholar
 

Zhou, S. Neglecting land–atmosphere feedbacks overestimates climate-driven increases in evapotranspiration. Zenodo https://doi.org/10.5281/zenodo.16730362 (2025).