Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).
Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).
Allan, R. P. et al. Advances in understanding large‐scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14337 (2020).
Zhang, S. et al. Reconciling disagreement on global river flood changes in a warming climate. Nat. Clim. Chang. 12, 1160–1167 (2022).
Zhou, S., Yu, B. & Zhang, Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv. 9, eabo1638 (2023).
Gu, B., Zhou, S., Yu, B., Findell, K. L. & Lintner, B. R. Multifaceted changes in water availability with a warmer climate. npj Clim. Atmos. Sci. 8, 31 (2025).
Budyko, M. I. Climate and Life (Academic Press, 1974).
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
Koutsoyiannis, D. Revisiting the global hydrological cycle: is it intensifying? Hydrol. Earth Syst. Sci. 24, 3899–3932 (2020).
Milly, P. C. D. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).
Zaitchik, B. F., Rodell, M., Biasutti, M. & Seneviratne, S. I. Wetting and drying trends under climate change. Nat. Water 1, 502–513 (2023).
Zhou, S., Yu, B., Huang, Y. & Wang, G. The complementary relationship and generation of the Budyko functions. Geophys. Res. Lett. 42, 1781–1790 (2015).
Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land‐surface models and climatic dryness metrics disagree? Earth’s Future 10, e2022EF002814 (2022).
Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44 (2019).
Zhou, S., Yu, B., Lintner, B. R., Findell, K. L. & Zhang, Y. Projected increase in global runoff dominated by land surface changes. Nat. Clim. Chang. 13, 442–449 (2023).
Scheff, J., Mankin, J. S., Coats, S. & Liu, H. CO2-plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environ. Res. Lett. 16, 034018 (2021).
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Chang. 11, 38–44 (2021).
Zhou, S. et al. Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nat. Commun. 13, 5756 (2022).
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
Seneviratne, S. I. et al. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Zhao, L. et al. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 23, 359–369 (2013).
Zhang, K., Kimball, J. S. & Running, S. W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 3, 834–853 (2016).
Kim, Y., Garcia, M. & Johnson, M. S. Land–atmosphere coupling constrains increases to potential evaporation in a warming climate: implications at local and global scales. Earth’s Future 11, e2022EF002886 (2023).
Zhang, Y. et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023).
Yang, H. & Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff: derivation of climate elasticity of runoff. Water Resour. Res. 47, W07526 (2011).
Zhou, S. et al. A new method to partition climate and catchment effect on the mean annual runoff based on the Budyko complementary relationship. Water Resour. Res. 52, 7163–7177 (2016).
Shuttleworth, W. J. In Handbook of Hydrology (McGraw-Hill Education, 1993).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (Food and Agriculture Organization of the United Nations, 1998).
Zhou, S. & Yu, B. Physical basis of the potential evapotranspiration and its estimation over land. J. Hydrol. 641, 131825 (2024).
Zhou, S. & Yu, B. Reconciling the discrepancy in projected global dryland expansion in a warming world. Glob. Change Biol. 31, e70102 (2025).
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
Brutsaert, W. A generalized complementary principle with physical constraints for land‐surface evaporation. Water Resour. Res. 51, 8087–8093 (2015).
Szilagyi, J. On the inherent asymmetric nature of the complementary relationship of evaporation. Geophys. Res. Lett. 34, L02405 (2007).
Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev. 100, 81–92 (1972).
McColl, K. A., Roderick, M. L., Berg, A. & Scheff, J. The terrestrial water cycle in a warming world. Nat. Clim. Chang. 12, 604–606 (2022).
Berg, A. Bridging the gap between simple metrics and model simulations of climate change impacts on land hydrology. Earth’s Future 10, e2022EF003259 (2022).
Sun, R., Hernández, F., Liang, X. & Yuan, H. A calibration framework for high-resolution hydrological models using a multiresolution and heterogeneous strategy. Water Resour. Res. 56, e2019WR026541 (2020).
Pandi, D., Kothandaraman, S. & Kuppusamy, M. Hydrological models: a review. Int. J. Hydrol. Sci. Technol. 12, 223–242 (2021).
Ma, N., Szilagyi, J. & Zhang, Y. Calibration‐free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 57, e2021WR029691 (2021).
Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).
Wei, H. et al. Direct vegetation response to recent CO2 rise shows limited effect on global streamflow. Nat. Commun. 15, 9423 (2024).
Zhou, S. et al. Large divergence in tropical hydrological projections caused by model spread in vegetation responses to elevated CO2. Earth’s Future 10, e2021EF002457 (2022).
Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).
Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).
Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Chang. 11, 331–337 (2021).
Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating palmer drought severity index. J. Clim. 17, 2335–2351 (2004).
Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).
Free vector and raster map data. Natural Earth http://www.naturalearthdata.com (2024).
Chow, V. T., Maidment, D. R. & Mays, L. W. Applied Hydrology (McGraw-Hill Book Company, 1988).
Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Series A 192, 120–145 (1948).
Qualls, R. J. & Crago, R. D. Graphical interpretation of wet surface evaporation equations. Water Resour. Res. 56, e2019WR026766 (2020).
Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 44, W03410 (2008).
Padrón, R. S., Gudmundsson, L., Greve, P. & Seneviratne, S. I. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis: review of surface water balance controls. Water Resour. Res. 53, 9659–9678 (2017).
Xu, X., Liu, W., Scanlon, B. R., Zhang, L. & Pan, M. Local and global factors controlling water–energy balances within the Budyko framework. Geophys. Res. Lett. 40, 6123–6129 (2013).
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
Zhou, S. Neglecting land–atmosphere feedbacks overestimates climate-driven increases in evapotranspiration. Zenodo https://doi.org/10.5281/zenodo.16730362 (2025).