James I, Huddleston I, MD. Annual Report 2024. American Academy of Orthopaedic Surgeons—American Joint Replacement Registry. 11. https://www.aaos.org/registries/publications/ajrr-annual-report/ 2024:141.

Alrayes MM, Sukeik M. Two-stage revision in periprosthetic knee joint infections. World J Orthop. 2023;14(3):113–22.

PubMed 
PubMed Central 

Google Scholar
 

Dombrowski ME, Wilson AE, Wawrose RA, O’Malley MJ, Urish KL, Klatt BA. A low percentage of patients satisfy typical indications for single-stage exchange arthroplasty for chronic periprosthetic joint infection. Clin Orthop Relat Res. 2020;478(8):1780–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lazic I, Scheele C, Pohlig F, von Eisenhart-Rothe R, Suren C. Treatment options in PJI—Is two-stage still gold standard? J Orthop. 2021;23:180–4.

PubMed 
PubMed Central 

Google Scholar
 

Rava A, Bruzzone M, Cottino U, Enrietti E, Rossi R. Hip spacers in two-stage revision for periprosthetic joint infection: a review of literature. Joints. 2019;7(2):56–63.

PubMed 
PubMed Central 

Google Scholar
 

Knappe K, Bitsch RG, Schonhoff M, Walker T, Renkawitz T, Jaeger S. Pulsatile lavage systems with high impact pressure and high flow produce cleaner cancellous bone prior to cementation in cemented arthroplasty. J Clin Med. 2021. https://doi.org/10.3390/jcm11010088.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Knappe K, Lunz A, Bulhoff M, Schonhoff M, Renkawitz T, Kretzer JP, et al. Pulsatile lavage systems and their potential to penetrate soft tissue. Eur J Trauma Emerg Surg. 2023;49(1):327–33.

PubMed 

Google Scholar
 

Charette RS, Melnic CM. Two-stage revision arthroplasty for the treatment of prosthetic joint infection. Curr Rev Musculoskelet Med. 2018;11(3):332–40.

PubMed 
PubMed Central 

Google Scholar
 

Vielgut I, Sadoghi P, Wolf M, et al. Two-stage revision of prosthetic hip joint infections using antibiotic-loaded cement spacers: when is the best time to perform the second stage? Int Orthop. 2015;39(9):1731–6.

PubMed 

Google Scholar
 

Anagnostakos K, Kelm J. Enhancement of antibiotic elution from acrylic bone cement. J Biomed Mater Res B Appl Biomater. 2009;90(1):467–75.

PubMed 

Google Scholar
 

Shahpari O, Mousavian A, Elahpour N, Malahias MA, Ebrahimzadeh MH, Moradi A. The use of antibiotic impregnated cement spacers in the treatment of infected total joint replacement: challenges and achievements. Arch Bone Jt Surg. 2020;8(1):11–20.

PubMed 
PubMed Central 

Google Scholar
 

Lunz A, Schonhoff M, Omlor GW, et al. Enhanced antibiotic release from bone cement spacers utilizing dual antibiotic loading with elevated vancomycin concentrations in two-stage revision for periprosthetic joint infection. Int Orthop. 2023;47(11):2655–61.

PubMed 

Google Scholar
 

Parra-Ruiz FJ, Gonzalez-Gomez A, Fernandez-Gutierrez M, et al. Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections. Int J Pharm. 2017;522(1–2):11–20.

CAS 
PubMed 

Google Scholar
 

Marczak D, Synder M, Sibinski M, Polguj M, Dudka J, Kowalczewski J. Two stage revision hip arthroplasty in periprosthetic joint infection. Comparison study: with or without the use of a spacer. Int Orthop. 2017;41(11):2253–8.

PubMed 

Google Scholar
 

Lunz A, Omlor GW, Schmidt G, Moradi B, Lehner B, Streit MR. Quality of life, infection control, and complication rates using a novel custom-made articulating hip spacer during two-stage revision for periprosthetic joint infection. Arch Orthop Trauma Surg. 2022;142(12):4041–54.

PubMed 

Google Scholar
 

Flesch I. Augmentation with antibiotic-impregnated spacers in sepsis revision surgery. Unfallchirurg. 2015;118(10):844–50.

CAS 
PubMed 

Google Scholar
 

Boelch SP, Rueckl K, Fuchs C, et al. Comparison of elution characteristics and compressive strength of biantibiotic-loaded PMMA Bone cement for spacers: copal(R) spacem with gentamicin and vancomycin versus palacos(R) R+G with vancomycin. Biomed Res Int. 2018;2018:4323518.

PubMed 
PubMed Central 

Google Scholar
 

Kuhn KD, Renz N, Trampuz A. Local antibiotic therapy. Unfallchirurg. 2017;120(7):561–72.

PubMed 

Google Scholar
 

Frew NM, Cannon T, Nichol T, Smith TJ, Stockley I. Comparison of the elution properties of commercially available gentamicin and bone cement containing vancomycin with ‘home-made’ preparations. Bone Joint J. 2017;99-B(1):73–7.

CAS 
PubMed 

Google Scholar
 

Bahrs C, Schnabel M, Frank T, Zapf C, Mutters R, von Garrel T. Lavage of contaminated surfaces: an in vitro evaluation of the effectiveness of different systems. J Surg Res. 2003;112(1):26–30.

PubMed 

Google Scholar
 

Brown LL, Shelton HT, Bornside GH, Cohn I Jr. Evaluation of wound irrigation by pulsatile jet and conventional methods. Ann Surg. 1978;187(2):170–3.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rodeheaver GT, Pettry D, Thacker JG, Edgerton MT, Edlich RF. Wound cleansing by high pressure irrigation. Surg Gynecol Obstet. 1975;141(3):357–62.

CAS 
PubMed 

Google Scholar
 

Ahn DK, Lee S, Moon SH, Kim DG, Hong SW, Shin WS. Bulb syringe and pulsed irrigation: which is more effective to remove bacteria in spine surgeries? Clin Spine Surg. 2016;29(1):34–7.

PubMed 

Google Scholar
 

Gross A, Cutright DE, Bhaskar SN. Effectiveness of pulsating water jet lavage in treatment of contaminated crushed wounds. Am J Surg. 1972;124(3):373–7.

CAS 
PubMed 

Google Scholar
 

Svoboda SJ, Bice TG, Gooden HA, Brooks DE, Thomas DB, Wenke JC. Comparison of bulb syringe and pulsed lavage irrigation with use of a bioluminescent musculoskeletal wound model. J Bone Joint Surg Am. 2006;88(10):2167–74.

PubMed 

Google Scholar
 

HeraeusMedical. PALACOS® R+G – High-Viscosity Bone Cement with Gentamicin, https://www.heraeus-medical.com/en/healthcare-professionals/products/palacos-rg/; 2024.

HeraeusMedical. COPAL® G+V – High-Viscosity Bone Cement with Gentamicin and Vancomycin, https://www.heraeus-medical.com/en-us/healthcare-professionals/products/copal-gv/; 2024.

HeraeusMedical. PALACOS® R – High-Viscosity Bone Cement without Antibiotics, https://www.heraeus-medical.com/en/healthcare-professionals/products/palacos-r/; 2024.

Lunz A, Knappe K, Omlor GW, Schonhoff M, Renkawitz T, Jaeger S. Mechanical strength of antibiotic-loaded PMMA spacers in two-stage revision surgery. BMC Musculoskelet Disord. 2022;23(1):945.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schonhoff M, Bormann T, Knappe K, Reiner T, Stange L, Jaeger S. The effect of cement aging on the stability of a cement-in-cement revision construct. Appl Sci. 2021. https://doi.org/10.3390/app11062814.

Article 

Google Scholar
 

Breusch SJ, Norman TL, Schneider U, Reitzel T, Blaha JD, Lukoschek M. Lavage technique in total hip arthroplasty: jet lavage produces better cement penetration than syringe lavage in the proximal femur. J Arthroplasty. 2000;15(7):921–7.

CAS 
PubMed 

Google Scholar
 

Clarius M, Hauck C, Seeger JB, James A, Murray DW, Aldinger PR. Pulsed lavage reduces the incidence of radiolucent lines under the tibial tray of Oxford unicompartmental knee arthroplasty: pulsed lavage versus syringe lavage. Int Orthop. 2009;33(6):1585–90.

PubMed 
PubMed Central 

Google Scholar
 

Kalteis T, Pforringer D, Herold T, Handel M, Renkawitz T, Plitz W. An experimental comparison of different devices for pulsatile high-pressure lavage and their relevance to cement intrusion into cancellous bone. Arch Orthop Trauma Surg. 2007;127(10):873–7.

PubMed 

Google Scholar
 

Seeger JB, Jaeger S, Bitsch RG, Mohr G, Rohner E, Clarius M. The effect of bone lavage on femoral cement penetration and interface temperature during Oxford unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am. 2013;95(1):48–53.

CAS 
PubMed 

Google Scholar
 

Poilvache H, Ruiz-Sorribas A, Sakoulas G, Rodriguez-Villalobos H, Cornu O, Van Bambeke F. Synergistic effects of pulsed lavage and antimicrobial therapy against Staphylococcus aureus biofilms in an in-vitro model. Front Med (Lausanne). 2020;7:527.

PubMed 

Google Scholar
 

Knecht CS, Moley JP, McGrath MS, Granger JF, Stoodley P, Dusane DH. Antibiotic loaded calcium sulfate bead and pulse lavage eradicates biofilms on metal implant materials in vitro. J Orthop Res. 2018;36(9):2349–54.

CAS 
PubMed 

Google Scholar
 

Marks KE, Nelson CL, Lautenschlager EP. Antibiotic-impregnated acrylic bone cement. J Bone Joint Surg Am. 1976;58(3):358–64.

CAS 
PubMed 

Google Scholar
 

Schurman DJ, Trindade C, Hirshman HP, Moser K, Kajiyama G, Stevens P. Antibiotic-acrylic bone cement composites. Studies of gentamicin and Palacos. J Bone Joint Surg Am. 1978;60(7):978–84.

CAS 
PubMed 

Google Scholar
 

Welch A. Antibiotics in acrylic bone cement. In vitro studies. J Biomed Mater Res. 1978;12(5):679–700.

CAS 
PubMed 

Google Scholar
 

Bistolfi A, Massazza G, Verne E, et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. 2011;2011:290851.

PubMed 
PubMed Central 

Google Scholar
 

Cieremans D, Muthusamy N, Singh V, Rozell JC, Aggarwal V, Schwarzkopf R. Does antibiotic bone cement reduce infection rates in primary total knee arthroplasty? Eur J Orthop Surg Traumatol. 2023;33(8):3379–85.

PubMed 

Google Scholar
 

Wang J, Zhu C, Cheng T, et al. A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS ONE. 2013;8(12):e82745.

PubMed 
PubMed Central 

Google Scholar
 

Xu T, Wu KL, Jie K. Comprehensive meta-analysis of antibiotic-impregnated bone cement versus plain bone cement in primary total knee arthroplasty for preventing periprosthetic joint infection. Chin J Traumatol. 2022;25(6):325–30.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Druel T, Vanpoulle G, Michard R, et al. Influence of the anatomy of the proximal articular surface of the trapezium (PAST) and the trapezoidal articular surface of the trapezium (TRAST) in cup placement during trapeziometacarpal arthroplasty. Hand Surg Rehabil. 2024. https://doi.org/10.1016/j.hansur.2023.12.004.

Article 
PubMed 

Google Scholar
 

Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–9.

CAS 
PubMed 

Google Scholar
 

Raveh D, Kopyt M, Hite Y, Rudensky B, Sonnenblick M, Yinnon AM. Risk factors for nephrotoxicity in elderly patients receiving once-daily aminoglycosides. QJM. 2002;95(5):291–7.

CAS 
PubMed 

Google Scholar
 

Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV. Gentamicin-associated acute kidney injury. QJM. 2009;102(12):873–80.

CAS 
PubMed 

Google Scholar
 

Yamada T, Fujii S, Shigemi A, Takesue Y. A meta-analysis of the target trough concentration of gentamicin and amikacin for reducing the risk of nephrotoxicity. J Infect Chemother. 2021;27(2):256–61.

CAS 
PubMed 

Google Scholar
 

Mazza D, Calderaro C, Iorio R, Drogo P, Andreozzi V, Ferretti A. Acute kidney failure after total knee arthroplasty revision with antibiotic-impregnated cement spacer. Orthop Rev (Pavia). 2020;12(2):8540.

PubMed 

Google Scholar
 

Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathot RAA, van Hest RM. Clinical pharmacokinetics of gentamicin in various patient populations and consequences for optimal dosing for gram-negative infections: an updated review. Clin Pharmacokinet. 2022;61(8):1075–94.

PubMed 
PubMed Central 

Google Scholar
 

Curtis JM, Sternhagen V, Batts D. Acute renal failure after placement of tobramycin-impregnated bone cement in an infected total knee arthroplasty. Pharmacotherapy. 2005;25(6):876–80.

PubMed 

Google Scholar
 

Patrick BN, Rivey MP, Allington DR. Acute renal failure associated with vancomycin- and tobramycin-laden cement in total hip arthroplasty. Ann Pharmacother. 2006;40(11):2037–42.

CAS 
PubMed 

Google Scholar
 

Amerstorfer F, Fischerauer S, Sadoghi P, et al. Superficial vancomycin coating of bone cement in orthopedic revision surgery: a safe technique to enhance local antibiotic concentrations. J Arthroplasty. 2017;32(5):1618–24.

PubMed 

Google Scholar
 

Burns AWR, Chao T, Tsai N, Lynch JT, Smith PN. The use of intra-articular vancomycin is safe in primary hip and knee arthroplasty. J Orthop. 2023;46:161–3.

PubMed 
PubMed Central 

Google Scholar
 

Hsieh PH, Chang YH, Chen SH, Ueng SW, Shih CH. High concentration and bioactivity of vancomycin and aztreonam eluted from Simplex cement spacers in two-stage revision of infected hip implants: a study of 46 patients at an average follow-up of 107 days. J Orthop Res. 2006;24(8):1615–21.

CAS 
PubMed 

Google Scholar
 

Salvati EA, Callaghan JJ, Brause BD, Klein RF, Small RD. Reimplantation in infection. Elution of gentamicin from cement and beads. Clin Orthop Relat Res. 1986;207:83–93.


Google Scholar
 

Thomassen MB, Hanberg P, Stilling M, et al. Local concentrations of gentamicin obtained by microdialysis after a controlled application of a GentaColl sponge in a porcine model. J Orthop Res. 2020;38(8):1793–9.

CAS 
PubMed 

Google Scholar
 

Springer BD, Lee GC, Osmon D, Haidukewych GJ, Hanssen AD, Jacofsky DJ. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res. 2004;427:47–51.


Google Scholar
 

Migliorini F, Weber CD, Bell A, et al. Bacterial pathogens and in-hospital mortality in revision surgery for periprosthetic joint infection of the hip and knee: analysis of 346 patients. Eur J Med Res. 2023;28(1):177.

PubMed 
PubMed Central 

Google Scholar
 

Periprosthetic PR, Infection J. Periprosthetic joint infection. N Engl J Med. 2023;388(3):251–62.


Google Scholar
 

Villa JM, Pannu TS, Theeb I, et al. International organism profile of periprosthetic total hip and knee infections. J Arthroplasty. 2021;36(1):274–8.

PubMed 

Google Scholar
 

Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.

CAS 
PubMed 

Google Scholar
 

Alvarez R, Lopez Cortes LE, Molina J, Cisneros JM, Pachon J. Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Diaz R, Afreixo V, Ramalheira E, Rodrigues C, Gago B. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis. Clin Microbiol Infect. 2018;24(2):97–104.

CAS 
PubMed 

Google Scholar
 

Sorensen TS, Sorensen AI. Bactericidal activity of gentamicin against S. aureus. In vitro study questions value of prolonged high concentrations. Acta Orthop Scand. 1993;64(1):82–4.

CAS 
PubMed 

Google Scholar
 

Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl. 1990;74:63–70.

CAS 
PubMed 

Google Scholar
 

Dalton BR. What is the best vancomycin therapeutic drug monitoring parameter to assess efficacy? A critical review of experimental data and assessment of the need for individual patient minimum inhibitory concentration value. Microorganisms. 2023. https://doi.org/10.3390/microorganisms11030567.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Elbarbry F. Vancomycin dosing and monitoring: critical evaluation of the current practice. Eur J Drug Metab Pharmacokinet. 2018;43(3):259–68.

CAS 
PubMed 

Google Scholar
 

Ye ZK, Chen YL, Chen K, et al. Therapeutic drug monitoring of vancomycin: a guideline of the division of therapeutic drug monitoring. Chin Pharmacol Soc J Antimicrob Chemother. 2016;71(11):3020–5.


Google Scholar
 

N’Diaye M, Pascaretti-Grizon F, Massin P, Basle MF, Chappard D. Water absorption of poly(methyl methacrylate) measured by vertical interference microscopy. Langmuir. 2012;28(31):11609–14.

PubMed 

Google Scholar
 

Chen IC, Su CY, Nien WH, et al. Influence of antibiotic-loaded acrylic bone cement composition on drug release behavior and mechanism. Polymers (Basel). 2021. https://doi.org/10.3390/polym13142240.

Article 
PubMed 
PubMed Central 

Google Scholar