Xing, Y. et al. Monitoring the formation of infinite-layer transition metal oxides through in situ atomic-resolution electron microscopy. Nat. Chem. 17, 66–73 (2025).
Zhang, J. et al. A correlated ferromagnetic polar metal by design. Nat. Mater. 23, 912–919 (2024).
Kang, K. T. et al. A room-temperature ferroelectric ferromagnet in a 1D tetrahedral chain network. Adv. Mater. 31, 1808104 (2019).
Kim, W. J. et al. Geometric frustration of Jahn–Teller order in the infinite-layer lattice. Nature 615, 237–243 (2023).
Jeen, H. et al. Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ. Adv. Mater. 25, 3651–3656 (2013).
Emori, S. et al. Coexistence of low damping and strong magnetoelastic coupling in epitaxial spinel ferrite thin films. Adv. Mater. 29, 1701130 (2017).
Burdett, J. K., Price, G. D. & Price, S. L. Role of the crystal-field theory in determining the structures of spinels. J. Am. Chem. Soc. 104, 92–95 (1982).
Zhang, J. et al. Brownmillerite Ca2Co2O5: synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem. Mater. 26, 7172–7182 (2014).
Chen, X. et al. Theoretical investigation of magnetic anisotropy at the La0.5Sr0.5MnO3/LaCoO2.5 interface. Phys. Rev. B 100, 144413 (2019).
Yamasaki, Y. et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006).
Hemberger, J. et al. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434, 364–367 (2005).
Sandemann, J. R. et al. Direct visualization of magnetic correlations in frustrated spinel ZnFe2O4. Adv. Mater. 35, 2207152 (2023).
Xing, Y. et al. Atomic-scale operando observation of oxygen diffusion during topotactic phase transition of a perovskite oxide. Matter 5, 3009–3022 (2022).
Khare, A. et al. Topotactic metal–insulator transition in epitaxial SrFeOx thin films. Adv. Mater. 29, 1606566 (2017).
Li, J. et al. Topotactic phase transformations by concerted dual-ion migration of B-site cation and oxygen in multivalent cobaltite La–Sr–Co–Ox films. Nano Energy 78, 105215 (2020).
Choi, H. S. et al. Molecularly thin, two-dimensional all-organic perovskites. Science 384, 60–66 (2024).
Aubrey, M. L. et al. Directed assembly of layered perovskite heterostructures as single crystals. Nature 597, 355–359 (2021).
Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).
Sun, J. et al. Emerging two-dimensional organic semiconductor-incorporated perovskites─a fascinating family of hybrid electronic materials. J. Am. Chem. Soc. 145, 20694–20715 (2023).
Morteza Najarian, A. et al. Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites. Nature 620, 328–335 (2023).
Gilley, I. W. et al. Combining organic cations of different sizes grants improved control over perovskitoid dimensionality and bandgap. J. Am. Chem. Soc. 147, 7777–7787 (2025).
Abdelwahab, I. et al. Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science 385, 311–317 (2024).
Kim, K. Y. et al. Intrinsic magnetic order of chemically exfoliated 2D Ruddlesden–Popper organic–inorganic halide perovskite ultrathin films. Small 16, 2005445 (2020).
Walsh, K. M., Smith, R. T. & Gamelin, D. R. Anion exchange and lateral heterostructure formation in ferromagnetic PEA2Cr(Cl,Br)4 two-dimensional perovskites. J. Am. Chem. Soc. 146, 29159–29168 (2024).
Nakayama, Y., Nishihara, S., Inoue, K., Suzuki, T. & Kurmoo, M. Coupling of magnetic and elastic domains in the organic–inorganic layered perovskite-like (C6H5C2H4NH3)2FeIICl4 crystal. Angew. Chem. Int. Ed. 56, 9367–9370 (2017).
Zheng, H. et al. Chiral multiferroicity in two-dimensional hybrid organic–inorganic perovskites. Nat. Commun. 15, 5556 (2024).
Gu, H. et al. Phase-pure two-dimensional layered perovskite thin films. Nat. Rev. Mater. 8, 533–551 (2023).
Hao, J. et al. Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures. ACS Nano 15, 7608–7617 (2021).
Mao, L., Chen, J., Vishnoi, P. & Cheetham, A. K. The renaissance of functional hybrid transition-metal halides. Acc. Mater. Res. 3, 439–448 (2022).
Daub, M., Natalukha, D. & Hillebrecht, H. Crystal structures of the perovskite-related system A/Rb/Cu(II)/Br (A = BA, Gu, PEA, 5-AVA, H2en) with winners, losers and compromises—versatility from 0D to 3D on different levels. Eur. J. Inorg. Chem. 2022, e202200136 (2022).
Li, X. et al. (C6H5CH2NH3)2CuBr4: a lead-free, highly stable two-dimensional perovskite for solar cell applications. ACS Appl. Energy Mater. 1, 2709–2716 (2018).
Zhan, X. et al. Enhanced structural stability and pressure-induced photoconductivity in two-dimensional hybrid perovskite (C6H5CH2NH3)2CuBr4. Angew. Chem. Int. Ed. 61, e202205491 (2022).
Harper, K. C., Bess, E. N. & Sigman, M. S. Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. Nat. Chem. 4, 366–374 (2012).
Brethomé, A. V., Fletcher, S. P. & Paton, R. S. Conformational effects on physical-organic descriptors: the case of sterimol steric parameters. ACS Catal. 9, 2313–2323 (2019).
Howard, J. R., Bhakare, A., Akhtar, Z., Wolf, C. & Anslyn, E. V. Data-driven prediction of circular dichroism-based calibration curves for the rapid screening of chiral primary amine enantiomeric excess values. J. Am. Chem. Soc. 144, 17269–17276 (2022).
Ai, Y., Lv, H.-P., Wang, Z.-X., Liao, W.-Q. & Xiong, R.-G. H/F substitution for advanced molecular ferroelectrics. Trends Chem. 3, 1088–1099 (2021).
Liu, H.-Y., Zhang, H.-Y., Chen, X.-G. & Xiong, R.-G. Molecular design principles for ferroelectrics: ferroelectrochemistry. J. Am. Chem. Soc. 142, 15205–15218 (2020).
Sun, B. et al. Intrinsic ferromagnetic semiconductors with high saturation magnetization from hybrid perovskites. Adv. Mater. 35, 2303945 (2023).
Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).
Chen, Z., Xue, J., Wang, Z. & Lu, H. Magnetic hybrid transition metal halides. Mater. Chem. Front. 8, 210–227 (2024).
Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).
Wang, C.-F. et al. Centimeter-sized single crystals of two-dimensional hybrid iodide double perovskite (4,4-Difluoropiperidinium)4AgBiI8 for high-temperature ferroelectricity and efficient X-Ray detection. Adv. Funct. Mater. 31, 2009457 (2021).
Comstock, A. H. et al. Hybrid magnonics in hybrid perovskite antiferromagnets. Nat. Commun. 14, 1834 (2023).
Wong, R. J. H., Willett, R. D. & Drumheller, J. E. An EPR study of interlayer exchange coupling in the quasi-two-dimensional salts, (CnH2n+1NH3)2CuCl4, with n = 1, 2, and 3. J. Chem. Phys. 74, 6018–6021 (1981).
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).
Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).
Taniguchi, K. et al. Magneto-electric directional anisotropy in polar soft ferromagnets of two-dimensional organic–inorganic hybrid perovskites. Angew. Chem. Int. Ed. 60, 14350–14354 (2021).
Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).
Hu, Q. et al. Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics. Nat. Commun. 15, 3029 (2024).
Sun, M.-E. et al. Chirality-dependent structural transformation in chiral 2D perovskites under high pressure. J. Am. Chem. Soc. 145, 8908–8916 (2023).
Stepakova, L. V. et al. Vibrational spectroscopic and force field studies of copper(II) chloride and bromide compounds, and crystal structure of KCuBr3. J. Raman Spectrosc. 39, 16–31 (2008).
Jaffe, A. et al. High compression-induced conductivity in a layered Cu–Br perovskite. Angew. Chem. Int. Ed. 59, 4017–4022 (2020).
Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+ U framework. Phys. Rev. B 73, 195107 (2006).
Tsirlin, A. A., Abakumov, A. M., Ritter, C. & Rosner, H. (CuCl)LaTa2O7 and quantum phase transition in the (CuX)LaM2O7 family (X= Cl, Br; M= Nb, Ta). Phys. Rev. B 86, 064440 (2012).
Zheng, H. et al. Strain-driven solid–solid crystal conversion in chiral hybrid pseudo-perovskites with paramagnetic-to-ferromagnetic transition. J. Am. Chem. Soc. 145, 3569–3576 (2023).