Debuf MJ, Benoit V, Cassart M, Gajewska K, Gauquier N, Meunier C, et al. Agenesis of olfactory bulbs: a forgotten diagnostic indicator of acampomelic campomelic dysplasia. Clin Case Rep. 2019;7(7):1352–54. https://doi.org/10.1002/ccr3.2228.

Sanchez-Castro M, Gordon CT, Petit F, Nord AS, Callier P, Andrieux J, et al. Congenital heart defects in patients with deletions upstream of SOX9. Hum. Mutat. 2013;34(12):1628–31. https://doi.org/10.1002/humu.22449.

Matsumoto A, Imagawa E, Miyake N, Ikeda T, Kobayashi M, Goto M, et al. The presence of diminished white matter and corpus callosal thinning in a case with a SOX9 mutation. Brain Dev. 2018;40(4):325–29. https://doi.org/10.1016/j.braindev.2017.09.002.

Massardier J, Roth P, Michel-Calemard L, Rudigoz RC, Bouvier R, Dijoud F, et al. Campomelic dysplasia: echographic suspicion in the first trimester of pregnancy and final diagnosis of two cases. Fetal Diagn Ther. 2008;24(4):452–57. https://doi.org/10.1159/000176299.

Mansour S, Hall CM, Pembrey ME, Young ID. A clinical and genetic study of campomelic dysplasia. J Med Genet. 1995;32(6):415–20. https://doi.org/10.1136/jmg.32.6.415.

Lecointre C, Pichon O, Hamel A, Heloury Y, Michel-Calemard L, Morel Y, et al. Familial acampomelic form of campomelic dysplasia caused by a 960 kb deletion upstream of SOX9. Am J Med Genet A. 2009;149A(6):1183–89. https://doi.org/10.1002/ajmg.a.32830.

Friedrich U, Schaefer E, Meinecke P. Campomelic dysplasia without overt campomelia. Clin Dysmorphol. 1992;1:172–78.

Michel-Calemard L, Lesca G, Morel Y, Boggio D, Plauchu H, Attia-Sobol J. Campomelic acampomelic dysplasia presenting with increased nuchal translucency in the first trimester. Prenat. 2004;24:519–23. https://doi.org/10.1002/pd.935.

Moog U, Jansen NJ, Scherer G, Schrander-Stumpel CT. Acampomelic campomelic syndrome. Am J Med Genet. 2001;104(3):239–45.

Sock E, Pagon RA, Keymolen K, Lissens W, Wegner M, Scherer G. Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. Hum Mol Genet. 2003;12(12):1439–47. https://doi.org/10.1093/hmg/ddg158.

Thong MK, Scherer G, Kozlowski K, Haan E, Morris L. Acampomelic campomelic dysplasia with SOX9 mutation. Am J Med Genet. 2000;93(5):421–25.

Hill-Harfe KL, Kaplan L, Stalker HJ, Zori RT, Pop R, Scherer G, et al. Fine mapping of chromosome 17 translocation breakpoints >or = 900 kb upstream of SOX9 in acampomelic campomelic dysplasia and a mild, familial skeletal dysplasia. Am J Hum Genet. 2005;76(4):663–71. https://doi.org/10.1086/429254.

Leipoldt M, Erdel M, Bien-Willner GA, Smyk M, Theurl M, Yatsenko SA, et al. Two novel translocation breakpoints upstream of SOX9 define borders of the proximal and distal breakpoint cluster region in campomelic dysplasia. Clin Genet. 2007;71(1):67–75. https://doi.org/10.1111/j.1399-0004.2007.00736.x.

Ninomiya S, Narahara K, Tsuji K, Yokoyama Y, Ito S, Seino Y Acampomelic campomelic syndrome and sex reversal associated with de novo t(12;17) translocation. Am J Med Genet. 1995;56(1):31–34. https://doi.org/10.1002/ajmg.1320560109.

Wada Y, Nishimura G, Nagai T, Sawai H, Yoshikata M, Miyagawa S, et al. Mutation analysis of SOX9 and single copy number variant analysis of the upstream region in eight patients with campomelic dysplasia and acampomelic campomelic dysplasia. Am J Med Genet A. 2009;149A(12):2882–85. https://doi.org/10.1002/ajmg.a.33107.

Preiksaitiene E, E B, A M, K G, Utkus A, V K. SOX9 p.Lys106Glu mutation causes acampomelic campomelic dysplasia: prenatal and postnatal clinical findings. Am J Med Genet A. 2016;170(3):781–84. https://doi.org/10.1002/ajmg.a.37466.

Velagaleti GV, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, et al. Position effects due to chromosome breakpoints that map approximately 900 kb upstream and approximately 1.3 mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet. 2005;76(4):652–62. https://doi.org/10.1086/429252.

Staffler A, Hammel M, Wahlbuhl M, Bidlingmaier C, Flemmer AW, Pagel P, et al. Heterozygous SOX9 mutations allowing for residual DNA-binding and transcriptional activation lead to the acampomelic variant of campomelic dysplasia. Hum. Mutat. 2010;31(6):E1436–44. https://doi.org/10.1002/humu.21238.

Takano T, Ota H, Ohishi H, Hata K, Furukawa R, Nakabayashi K. Adult acampomelic campomelic dysplasia and disorders of sex development due to a reciprocal translocation involving chromosome 17q24.3 upstream of the SOX9 gene. Eur J Med Genet. 2021;64(11):104332. https://doi.org/10.1016/j.ejmg.2021.104332.

von Bohlen Ae, Böhm J, Pop R, Johnson DS, Tolmie J, Stücker R, et al. A mutation creating an upstream initiation codon in the SOX9 5’ UTR causes acampomelic campomelic dysplasia. Mol Genet Evidence Med. 2017;5(3):261–68. https://doi.org/10.1002/mgg3.282.

Fonseca AC, Bonaldi A, Bertola DR, Kim CA, Otto PA, Vianna-Morgante AM. The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC Med Genet. 2013;14:50. https://doi.org/10.1186/1471-2350-14-50.

Gentilin B, Forzano F, Bedeschi MF, Rizzuti T, Faravelli F, Izzi C, et al. Phenotype of five cases of prenatally diagnosed campomelic dysplasia harboring novel mutations of the SOX9 gene. Ultrasound Obstet Gynecol. 2010;36:315–23. https://doi.org/10.1002/uog.7761.

Chen SY, Lin SJ, Tsai LP, Chou YY. Sex-reversed acampomelic campomelic dysplasia with a homozygous deletion mutation in SOX9 gene. Urology. 2012;79(4):908–11. https://doi.org/10.1016/j.urology.2011.07.1402.

Gopakumar H, Superti-Furga A, Unger S, Scherer G, Rajiv PK, Nampoothiri S. Acampomelic form of campomelic dysplasia with SOX9 missense mutation. Indian J Pediatr. 2014;81(1):98–100. https://doi.org/10.1007/s12098-013-1007-x.

Walters-Sen LC, Thrush DL, Hickey SE, Hashimoto S, Reshmi S, Gastier-Foster JM, et al. Atypical breakpoint in a t(6;17) translocation case of acampomelic campomelic dysplasia. Eur J Med Genet. 2014;57(7):315–18. https://doi.org/10.1016/j.ejmg.2014.04.018.

Pop R, Conz C, Lindenberg KS, Blesson S, Schmalenberger B, Briault S, et al. Screening of the 1 Mb SOX9 5’ control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet. 2004;41(4):e47. https://doi.org/10.1136/jmg.2003.013185.

Jakubiczka S, Schröder C, Ullmann R, Volleth M, Ledig S, Gilberg E, et al. Translocation and deletion around SOX9 in a patient with acampomelic campomelic dysplasia and sex reversal. Sex Dev. 2010;4(3):143–49. https://doi.org/10.1159/000302403.

Savarirayan R, Bankier A. Acampomelic campomelic dysplasia with de novo 5q;17q reciprocal translocation and severe phenotype. J Med Genet. 1998;35(7):597–99. https://doi.org/10.1136/jmg.35.7.597.

Castori M, Bottillo I, Morlino S, Barone C, Cascone P, et al. Pediatric Craniofacial Malformation (PECRAM) Study Group, Variability in a three-generation family with Pierre Robin sequence, acampomelic campomelic dysplasia, and intellectual disability due to a novel ∼1 Mb deletion upstream of SOX9, and including KCNJ2 and KCNJ16. Birth Defects researcha Clin Mol Teratol. 2016;106(1):61–68. https://doi.org/10.1002/bdra.23463

Ledig S, Hiort O, Scherer G, Hoffmann M, Wolff G, Morlot S, et al. Array-CGH analysis in patients with syndromic and non-syndromic XY gonadal dysgenesis: evaluation of array CGH as diagnostic tool and search for new candidate loci. Hum Reprod. 2010;25(10):2637–46. https://doi.org/10.1093/humrep/deq167.

Bukowska-Olech E, Dmitrzak-Węglarz M, Larysz D, Wojciechowicz B, Simon D, Walczak-Sztulpa J, et al. Compound craniosynostosis, intellectual disability, and Noonan-like facial dysmorphism associated with 7q32.3-q35 deletion. Birth Defects Res. 2020;112(10):740–48. https://doi.org/10.1002/bdr2.1744.

Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh TS, et al. Ultrastructural details of mammalian chromosome architecture. Mol Cell. 2020;78(3):554–65.e7. https://doi.org/10.1016/j.molcel.2020.03.003.

Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518(7539):331–36. https://doi.org/10.1038/nature14222.

Bagheri-Fam S, Barrionuevo F, Dohrmann U, Günther T, Schüle R, Kemler R, et al. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol. 2006;291(2):382–97. https://doi.org/10.1016/j.ydbio.2005.11.013.

Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet. 2009;41(3):359–64. https://doi.org/10.1038/ng.329.

Bien-Willner GA, Stankiewicz P, Lupski JR. SOX9cre1, a cis-acting regulatory element located 1.1 Mb upstream of SOX9, mediates its enhancement through the shh pathway. Hum Mol Genet. 2007;16(10):1143–56. https://doi.org/10.1093/hmg/ddm061.

Smyk M, Akdemir KC, Stankiewicz P. SOX9 chromatin folding domains correlate with its real and putative distant cis-regulatory elements. Nucleus. 2017;8(2):182–87. https://doi.org/10.1080/19491034.2017.1279776.

Kim GJ, Sock E, Buchberger A, Just W, Denzer F, Hoepffner W, et al. Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX disorder of sex development. J Med Genet. 2015;52(4):240–47. https://doi.org/10.1136/jmedgenet-2014-102864.

National Center for Biotechnology Information (NCBI). Gene id: 108004545 – SOX9 testis enhancer F8 (LOC108004545). NCBI Gene [Internet]. https://www.ncbi.nlm.nih.gov/gene/108004545. Bethesda (MD): National Library of Medicine (US); [cited 2025-09-28]. Available from.

Gonen N, Quinn A, Hc O, Koopman P, Lovell-Badge R. Normal levels of Sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone. PLoS Genet. 2017;13(1):e1006520. https://doi.org/10.1371/journal.pgen.1006520.

Visel A, Minovitsky S, Dubchak I, Pennacchio LA. Vista enhancer browser–a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35(Database issue):D88–92. https://doi.org/10.1093/nar/gkl822.

Kosicki M, Baltoumas FA, Kelman G, Boverhof J, Ong Y, Cook LE, et al. Vista enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. 2025;53(D1):D324–30. https://doi.org/10.1093/nar/gkae940.

Zhang X, Cowper- SLR, Bailey SD, Moore JH, Lupien M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Res. 2012;22(8):1437–46. https://doi.org/10.1101/gr.135665.111.

White S, Ohnesorg T, Notini A, Roeszler K, Hewitt J, Daggag H, et al. Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS One. 2011;6(3):e17793. https://doi.org/10.1371/journal.pone.0017793.

Olney PN, Kean LS, Graham D, Elsas LJ, May KM. Campomelic syndrome and deletion of SOX9. Am J Med Genet. 1999;84(1):20–24.

Franke M, Ibrahim DM, Andrey G, Schwarzer W, Heinrich V, Schöpflin R, et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature. 2016;538(7624):265–69. https://doi.org/10.1038/nature19800.

Despang A, Schöpflin R, Franke M, Ali S, Jerković I, Paliou C, et al. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of tad architecture. Nat Genet. 2019;51(8):1263–71. https://doi.org/10.1038/s41588-019-0466-z.

Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol. 2008;18(3):213–19. https://doi.org/10.1007/s10165-008-0048-x.

Johannsen TH, Main KM, Ljubicic ML, Jensen TK, Andersen HR, Andersen MS, et al. Sex differences in reproductive hormones during mini-puberty in infants with normal and disordered sex development. J Clin Endocrinol Metab. 2018;103(8):3028–37. https://doi.org/10.1210/jc.2018-00482.

Fontana L, Garzia E, Marfia G, Galiano V, Miozzo M. Epigenetics of functional hypothalamic amenorrhea. Front Endocrinol (lausanne). 2022;13:953431. https://doi.org/10.3389/fendo.2022.953431.

Cools M. Germ cell cancer risk in DSD patients. Ann Endocrinol (Paris). 2014;75(2):67–71. https://doi.org/10.1016/j.ando.2014.04.003.