Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

Article 
MathSciNet 

Google Scholar
 

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

Article 
ADS 

Google Scholar
 

Pershan, P. S. Magneto-optical effects. J. Appl. Phys. 38, 1482–1490 (1967).

Article 
ADS 

Google Scholar
 

Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

Article 
ADS 

Google Scholar
 

Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

Article 
ADS 

Google Scholar
 

Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys.: Condens. Matter 20, 434203 (2008).

ADS 

Google Scholar
 

Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. NPJ Quantum Mater. 3, 19 (2018).

Article 
ADS 

Google Scholar
 

Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

Article 
ADS 

Google Scholar
 

Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

Article 
ADS 

Google Scholar
 

Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).

Article 
ADS 

Google Scholar
 

Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

Article 
ADS 

Google Scholar
 

Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

Article 

Google Scholar
 

Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

Article 

Google Scholar
 

Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

Article 
ADS 

Google Scholar
 

Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

Article 
ADS 

Google Scholar
 

Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).

Article 
ADS 

Google Scholar
 

Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

Article 

Google Scholar
 

Hayashida, T. et al. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).

Article 
ADS 

Google Scholar
 

Du, K. et al. Kibble–Zurek mechanism of Ising domains. Nat. Phys. 19, 1495–1501 (2023).

Article 

Google Scholar
 

Fang, X. et al. Ferrorotational selectivity in ilmenites. J. Am. Chem. Soc. 145, 28022–28029 (2023).

Article 
ADS 

Google Scholar
 

Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 41–50 (2001).

Article 
ADS 

Google Scholar
 

Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys.: Condens. Matter 20, 434201 (2008).

ADS 

Google Scholar
 

Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). NPJ Quantum Mater. 6, 58 (2021).

Lewińska, S. et al. Magnetic susceptibility and phase transitions in LiNiPO4. Phys. Rev. B 99, 214440 (2019).

Article 
ADS 

Google Scholar
 

Inda, A. & Hayami, S. Nonlinear transverse magnetic susceptibility under electric toroidal dipole ordering. J. Phys. Soc. Jpn 92, 043701 (2023).

Article 
ADS 

Google Scholar
 

Shirane, G., Pickart, S. J., Nathans, R. & Ishikawa, Y. Neutron-diffraction study of antiferromagnetic FeTi03 and its solid solutions with α-Fe2O3. J. Phys. Chem. Solids 10, 35–43 (1959).

Article 
ADS 

Google Scholar
 

Lawson, C. A., Nord, G. L., Dowty, E. & Hargraves, R. B. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals. Science 213, 1372–1374 (1981).

Article 
ADS 

Google Scholar
 

Burton, B. P., Robinson, P., McEnroe, S. A., Fabian, K. & Ballar, T. B. A low-temperature phase diagram for ilmenite-rich compositions in the system Fe2O3-FeTiO3. Am. Mineral. 93, 1260–1272 (2008).

Article 
ADS 

Google Scholar
 

Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

Article 

Google Scholar
 

Guo, X. et al. Ferrorotational domain walls revealed by electric quadrupole second harmonic generation microscopy. Phys. Rev. B 107, L180102 (2023).

Article 
ADS 

Google Scholar
 

Yokota, H., Hayashida, T., Kitahara, D. & Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. NPJ Quantum Mater. 7, 106 (2022).

Article 
ADS 

Google Scholar
 

Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).

Article 

Google Scholar
 

Liu, G. et al. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals. Nat. Nanotechnol. 18, 854–860 (2023).

Article 
ADS 

Google Scholar
 

Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. USA 118, e2023337118 (2021).

Article 

Google Scholar
 

Liou, S. H. & Yao, Y. D. Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130–134 (1998).

Article 
ADS 

Google Scholar
 

Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

Article 
ADS 

Google Scholar
 

Gorlach, A. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023).

Article 

Google Scholar
 

Holleis, L. et al. Anomalous and anisotropic nonlinear susceptibility in the proximate Kitaev magnet α-RuCl3. NPJ Quantum Mater. 6, 66 (2021).

Shivaram, B. S., Dorsey, B., Hinks, D. G. & Kumar, P. Metamagnetism and the fifth-order susceptibility in UPt3. Phys. Rev. B 89, 161108 (2014).

Article 
ADS 

Google Scholar
 

Charilaou, M., Sheptyakov, D., Löffler, J. F. & Gehring, A. U. Large spontaneous magnetostriction in FeTiO3 and adjustable magnetic configuration in Fe(III)-doped FeTiO3. Phys. Rev. B 86, 024439 (2012).

Article 
ADS 

Google Scholar
 

Ishikawa, Y. Electrical properties of FeTiO3-Fe2O3 solid solution series. J. Phys. Soc. Jpn 13, 37–42 (1958).

Article 
ADS 

Google Scholar
 

Hayami, S., Oiwa, R. & Kusunose, H. Unconventional Hall effect and magnetoresistance induced by metallic ferroaxial ordering. Phys. Rev. B 108, 085124 (2023).

Article 
ADS 

Google Scholar
 

Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Article 
ADS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article 
ADS 

Google Scholar
 

Li, C., Freeman, A. J., Jansen, H. J. F. & Fu, C. L. Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates. Phys. Rev. B 42, 5433–5442 (1990).

Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys.: Condens. Matter 9, 767 (1997).

ADS 

Google Scholar
 

Raghavender, A. T. et al. Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129–132 (2013).

Article 
ADS 

Google Scholar
 

Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter 32, 165902 (2020).

ADS 

Google Scholar
 

Freimuth, F., Mokrousov, Y., Wortmann, D., Heinze, S. & Blügel, S. Maximally localized Wannier functions within the FLAPW formalism. Phys. Rev. B 78, 035120 (2008).

Article 
ADS 

Google Scholar