Turken O, NarIn Y, DemIrbas S, Onde ME, Sayan O, KandemIr EG, et al. Breast cancer in association with thyroid disorders. Breast Cancer Res. 2003;5(5):R110–3. https://doi.org/10.1186/bcr609.


Google Scholar
 

Giani C, Fierabracci P, Bonacci R, Gigliotti A, Campani D, De Negri F, et al. Relationship between breast cancer and thyroid disease: relevance of autoimmune thyroid disorders in breast malignancy. J Clin Endocrinol Metab. 1996;81(3):990–4. https://doi.org/10.1210/jcem.81.3.8772562.


Google Scholar
 

Jiskra J, Limanova Z, Barkmanova J, Smutek D, Friedmannova Z. Autoimmune thyroid diseases in women with breast cancer and colorectal cancer. Physiol Res. 2004;53(6):693–702.


Google Scholar
 

Dobrinja C, Scomersi S, Giudici F, Vallon G, Lanzaro A, Troian M, et al. Association between benign thyroid disease and breast cancer: a single center experience. BMC Endocr Disord. 2019;19(1):104. https://doi.org/10.1186/s12902-019-0426-8.


Google Scholar
 

Pan XF, Ma YJ, Tang Y, Yu MM, Wang H, Fan YR. Breast cancer populations may have an increased prevalence of thyroglobulin antibody and thyroid peroxidase antibody: a systematic review and meta-analysis. Breast Cancer. 2020;27(5):828–36. https://doi.org/10.1007/s12282-020-01078-z.


Google Scholar
 

Jha CK, Mishra A, Yadav SB, Agarwal G, Singh S, Chand G, et al. Thyroid dysfunctions and autoimmunity in breast cancer patients: a prospective case-control study. Arch Endocrinol Metab. 2021;64(6):743–50. https://doi.org/10.20945/2359-3997000000284.


Google Scholar
 

Prinzi N, Sorrenti S, Baldini E, De Vito C, Tuccilli C, Catania A, et al. Association of thyroid diseases with primary extra-thyroidal malignancies in women: results of a cross-sectional study of 6386 patients. PLoS ONE. 2015;10(3):e0122958. https://doi.org/10.1371/journal.pone.0122958.


Google Scholar
 

Prinzi N, Baldini E, Sorrenti S, De Vito C, Tuccilli C, Catania A, et al. Prevalence of breast cancer in thyroid diseases: results of a cross-sectional study of 3921 patients. Breast Cancer Res Treat. 2014;144(3):683–8. https://doi.org/10.1007/s10549-014-2893-y.


Google Scholar
 

Smyth PP, Shering SG, Kilbane MT, Murray MJ, McDermott EW, Smith DF, et al. Serum thyroid peroxidase autoantibodies, thyroid volume, and outcome in breast carcinoma. J Clin Endocrinol Metab. 1998;83(8):2711–6. https://doi.org/10.1210/jcem.83.8.5049.


Google Scholar
 

Baldini E, Lauro A, Tripodi D, Pironi D, Amabile MI, Ferent IC, et al. Thyroid diseases and breast cancer. J Pers Med. 2022. https://doi.org/10.3390/jpm12020156.


Google Scholar
 

Kim SS, Kim IJ, Kim SJ, Lee JY, Bae YT, Jeon YK, et al. Incidental diffuse thyroid 18F-FDG uptake related to autoimmune thyroiditis may be a favorable prognostic factor in advanced breast cancer. J Nucl Med. 2012;53(12):1855–62. https://doi.org/10.2967/jnumed.112.108811.


Google Scholar
 

Ozmen T, Gulluoglu BM, Yegen CS, Soran A. Autoimmune thyroid disease and breast cancer prognosis. J Breast Health. 2015;11(2):67–71. https://doi.org/10.5152/tjbh.2015.2462.


Google Scholar
 

Spitzweg C, Joba W, Eisenmenger W, Heufelder AE. Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa. J Clin Endocrinol Metab. 1998;83(5):1746–51. https://doi.org/10.1210/jcem.83.5.4839.


Google Scholar
 

Smyth PP. Autoimmune thyroid disease and breast cancer: a chance association? J Endocrinol Invest. 2000;23(1):42–3. https://doi.org/10.1007/BF03343675.


Google Scholar
 

Sogaard M, Farkas DK, Ehrenstein V, Jorgensen JO, Dekkers OM, Sorensen HT. Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol. 2016;174(4):409–14. https://doi.org/10.1530/EJE-15-0989.


Google Scholar
 

Tran TV, Maringe C, Benitez Majano S, Rachet B, Boutron-Ruault MC, Journy N. Thyroid dysfunction and breast cancer risk among women in the UK Biobank cohort. Cancer Med. 2021;10(13):4604–14. https://doi.org/10.1002/cam4.3978.


Google Scholar
 

Bolf EL, Gillis NE, Davidson CD, Cozzens LM, Kogut S, Tomczak JA, et al. Common tumor-suppressive signaling of thyroid hormone receptor beta in breast and thyroid cancer cells. Mol Carcinog. 2021;60(12):874–85. https://doi.org/10.1002/mc.23352.


Google Scholar
 

Park JW, Zhao L, Cheng SY. Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor beta in xenograft models. Am J Cancer Res. 2013;3(3):302–11.


Google Scholar
 

Ling Y, Ling X, Fan L, Wang Y, Li Q. Mutation analysis underlying the downregulation of the thyroid hormone receptor beta1 gene in the Chinese breast cancer population. Onco Targets Ther. 2015;8:2967–72. https://doi.org/10.2147/OTT.S93418.


Google Scholar
 

Li Z, Meng ZH, Chandrasekaran R, Kuo WL, Collins CC, Gray JW, et al. Biallelic inactivation of the thyroid hormone receptor beta1 gene in early stage breast cancer. Cancer Res. 2002;62(7):1939–43.


Google Scholar
 

Tran TV, Rubino C, Allodji R, Andruccioli M, Bardet S, Diallo I, et al. Breast cancer risk among thyroid cancer survivors and the role of I-131 treatment. Br J Cancer. 2022;127(12):2118–24. https://doi.org/10.1038/s41416-022-01982-5.


Google Scholar
 

Kuo JH, Chabot JA, Lee JA. Breast cancer in thyroid cancer survivors: an analysis of the surveillance, epidemiology, and end results-9 database. Surgery. 2016;159(1):23–9. https://doi.org/10.1016/j.surg.2015.10.009.


Google Scholar
 

Chen S, Wu F, Hai R, You Q, Xie L, Shu L, et al. Thyroid disease is associated with an increased risk of breast cancer: a systematic review and meta-analysis. Gland Surg. 2021;10(1):336–46. https://doi.org/10.21037/gs-20-878.


Google Scholar
 

Hardefeldt PJ, Eslick GD, Edirimanne S. Benign thyroid disease is associated with breast cancer: a meta-analysis. Breast Cancer Res Treat. 2012;133(3):1169–77. https://doi.org/10.1007/s10549-012-2019-3.


Google Scholar
 

Hu X, Wang X, Liang Y, Chen X, Zhou S, Fei W, et al. Cancer risk in Hashimoto’s thyroiditis: a systematic review and meta-analysis. Front Endocrinol. 2022;13:937871. https://doi.org/10.3389/fendo.2022.937871.


Google Scholar
 

Graceffa G, Scerrino G, Militello G, Laise I, Randisi B, Melfa G, et al. Breast cancer in previously thyroidectomized patients: which thyroid disorders are a risk factor? Future Sci OA. 2021;7(5):FSO699. https://doi.org/10.2144/fsoa-2021-0029.


Google Scholar
 

Ito K, Maruchi N. Breast cancer in patients with Hashimoto’s thyroiditis. Lancet. 1975;2(7945):1119–21.


Google Scholar
 

Wang W, Jiang QL, Xu Q, Zeng Y, Jiang R, Jiang J. Selenium regulates T cell differentiation in experimental autoimmune thyroiditis in mice. Int Immunopharmacol. 2023;124(Pt B):110993. https://doi.org/10.1016/j.intimp.2023.110993.


Google Scholar
 

Muller I, Giani C, Zhang L, Grennan-Jones FA, Fiore E, Belardi V, et al. Does thyroid peroxidase provide an antigenic link between thyroid autoimmunity and breast cancer? Int J Cancer. 2014;134(7):1706–14. https://doi.org/10.1002/ijc.28493.


Google Scholar
 

Sheikh IA, Jiffri EH, Kamal MA, Ashraf GM, Beg MA. Lactoperoxidase, an antimicrobial milk protein, as a potential activator of carcinogenic heterocyclic amines in breast cancer. Anticancer Res. 2017;37(11):6415–20.


Google Scholar
 

Jerzak KJ, Cockburn JG, Dhesy-Thind SK, Pond GR, Pritchard KI, Nofech-Mozes S, et al. Thyroid hormone receptor beta-1 expression in early breast cancer: a validation study. Breast Cancer Res Treat. 2018;171(3):709–17. https://doi.org/10.1007/s10549-018-4844-5.


Google Scholar
 

Upadhyay G, Singh R, Agarwal G, Mishra SK, Pal L, Pradhan PK, et al. Functional expression of sodium iodide symporter (NIS) in human breast cancer tissue. Breast Cancer Res Treat. 2003;77(2):157–65. https://doi.org/10.1023/A:1021321409159.


Google Scholar
 

Keam SJ. Resmetirom: first approval. Drugs. 2024;84(6):729–35. https://doi.org/10.1007/s40265-024-02045-0.


Google Scholar
 

Tran TV, Kitahara CM, de Vathaire F, Boutron-Ruault MC, Journy N. Thyroid dysfunction and cancer incidence: a systematic review and meta-analysis. Endocr Relat Cancer. 2020;27(4):245–59. https://doi.org/10.1530/ERC-19-0417.


Google Scholar
 

Yang H, Holowko N, Grassmann F, Eriksson M, Hall P, Czene K. Hyperthyroidism is associated with breast cancer risk and mammographic and genetic risk predictors. BMC Med. 2020;18(1):225. https://doi.org/10.1186/s12916-020-01690-y.


Google Scholar
 

Hall LC, Salazar EP, Kane SR, Liu N. Effects of thyroid hormones on human breast cancer cell proliferation. J Steroid Biochem Mol Biol. 2008;109(1–2):57–66. https://doi.org/10.1016/j.jsbmb.2007.12.008.


Google Scholar
 

Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology. 2004;145(7):3265–72. https://doi.org/10.1210/en.2004-0308.


Google Scholar
 

Sar P, Peter R, Rath B, Das Mohapatra A, Mishra SK. 3, 3’5 triiodo L thyronine induces apoptosis in human breast cancer MCF-7 cells, repressing SMP30 expression through negative thyroid response elements. PLoS ONE. 2011;6(6):e20861. https://doi.org/10.1371/journal.pone.0020861.


Google Scholar
 

Davidson CD, Gillis NE, Carr FE. Thyroid hormone receptor beta as tumor suppressor: untapped potential in treatment and diagnostics in solid tumors. Cancers. 2021. https://doi.org/10.3390/cancers13174254.


Google Scholar
 

Quan T, Cockburn J, Dhesy-Thind S, Bane A, Leong H, Geleff C, et al. The significance of thyroid hormone receptors in breast cancer: a hypothesis-generating narrative review. Curr Oncol. 2024;31(5):2364–75. https://doi.org/10.3390/curroncol31050176.


Google Scholar
 

Dhingra M, Mahalanobis S, Das A. Thyroid receptor β might be responsible for breast cancer associated with Hashimoto’s thyroiditis: a new insight into pathogenesis. Immunol Res. 2022;70(4):441–8. https://doi.org/10.1007/s12026-022-09288-7.


Google Scholar
 

Harrison DA. The jak/stat pathway. Cold Spring Harb Perspect Biol. 2012;4(3):a011205.


Google Scholar
 

Wojcicka A, Piekielko-Witkowska A, Kedzierska H, Rybicka B, Poplawski P, Boguslawska J, et al. Epigenetic regulation of thyroid hormone receptor beta in renal cancer. PLoS ONE. 2014;9(5):e97624. https://doi.org/10.1371/journal.pone.0097624.


Google Scholar
 

Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective thyroid hormone receptor-beta (TRbeta) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front Med. 2020;7:331. https://doi.org/10.3389/fmed.2020.00331.


Google Scholar
 

Cui B, Xiao X, Wang J, Wang H, Wu C, Yan Y, et al. Low THRB (thyroid hormone receptor beta) promoter methylation levels in peripheral blood leukocytes induced by systematic inflammation are involved in low thyroid hormone function in metabolic syndrome. Hypertension. 2021;78(4):1005–15. https://doi.org/10.1161/HYPERTENSIONAHA.121.17847.


Google Scholar