Collaborators GBDD. Global, regional, and National burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/S0140-6736(23)01301-6.


Google Scholar
 

ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes A. 2. Classification and diagnosis of diabetes: standards of care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–40. https://doi.org/10.2337/dc23-S002.


Google Scholar
 

Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023;168:115734. https://doi.org/10.1016/j.biopha.2023.115734.


Google Scholar
 

Gupta S, Dominguez M, Golestaneh L. Diabetic kidney disease: an update. Med Clin North Am. 2023;107(4):689–705. https://doi.org/10.1016/j.mcna.2023.03.004.


Google Scholar
 

Ricciardi CA, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies. Metabolism. 2021;124:154890. https://doi.org/10.1016/j.metabol.2021.154890.


Google Scholar
 

Selby NM, Taal MW. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 2020;22(Suppl 1):3–15. https://doi.org/10.1111/dom.14007.


Google Scholar
 

Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65(1):3–13. https://doi.org/10.1007/s00125-021-05585-2.


Google Scholar
 

Su B, Wang Y, Dong Y, Hu G, Xu Y, Peng X, Wang Q, Zheng X. Trends in diabetes mortality in urban and rural China, 1987–2019: A joinpoint regression analysis. Front Endocrinol (Lausanne). 2021;12:777654. https://doi.org/10.3389/fendo.2021.777654.


Google Scholar
 

Pearson-Stuttard J, Buckley J, Cicek M, Gregg EW. The changing nature of mortality and morbidity in patients with diabetes. Endocrinol Metab Clin North Am. 2021;50(3):357–68. https://doi.org/10.1016/j.ecl.2021.05.001.


Google Scholar
 

Eddy AC, Trask AJ. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev. 2021;57:11–8. https://doi.org/10.1016/j.cytogfr.2020.11.002.


Google Scholar
 

Tang Y, Liu T, Sun S, Peng Y, Huang X, Wang S, Zhou Z. Role and mechanism of growth differentiation factor 15 in chronic kidney disease. J Inflamm Res. 2024;17:2861–71. https://doi.org/10.2147/JIR.S451398.


Google Scholar
 

Lajer M, Jorsal A, Tarnow L, Parving HH, Rossing P. Plasma growth differentiation factor-15 independently predicts all-cause and cardiovascular mortality as well as deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetes Care. 2010;33(7):1567–72. https://doi.org/10.2337/dc09-2174.


Google Scholar
 

Bidadkosh A, Lambooy SPH, Heerspink HJ, Pena MJ, Henning RH, Buikema H, Deelman LE. Predictive properties of biomarkers GDF-15, NTproBNP, and hs-TnT for morbidity and mortality in patients with type 2 diabetes with nephropathy. Diabetes Care. 2017;40(6):784–92. https://doi.org/10.2337/dc16-2175.


Google Scholar
 

Carlsson AC, Nowak C, Lind L, Ostgren CJ, Nystrom FH, Sundstrom J, Carrero JJ, Riserus U, Ingelsson E, Fall T, Arnlov J. Growth differentiation factor 15 (GDF-15) is a potential biomarker of both diabetic kidney disease and future cardiovascular events in cohorts of individuals with type 2 diabetes: a proteomics approach. Ups J Med Sci. 2020;125(1):37–43. https://doi.org/10.1080/03009734.2019.1696430.


Google Scholar
 

Sen T, Li J, Neuen BL, Arnott C, Neal B, Perkovic V, Mahaffey KW, Shaw W, Canovatchel W, Hansen MK, Heerspink HJL. Association between Circulating GDF-15 and Cardio-Renal outcomes and effect of canagliflozin: results from the CANVAS trial. J Am Heart Assoc. 2021;10(23):e021661. https://doi.org/10.1161/JAHA.121.021661.


Google Scholar
 

Xie S, Li Q, Luk AOY, Lan HY, Chan PKS, Bayes-Genis A, Chan FKL, Fung E. Major adverse cardiovascular events and mortality prediction by Circulating GDF-15 in patients with type 2 diabetes: a systematic review and meta-analysis. Biomolecules. 2022;12(7). https://doi.org/10.3390/biom12070934.

Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, Niu Y, Du L. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10. https://doi.org/10.1111/jebm.12141.


Google Scholar
 

Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hrobjartsson A, Kirkham J, Juni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schunemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.


Google Scholar
 

Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods G, Statistical Cochrane G. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928.


Google Scholar
 

Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schunemann HJ. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.


Google Scholar
 

Frimodt-Moller M, von Scholten BJ, Reinhard H, Jacobsen PK, Hansen TW, Persson FI, Parving HH, Rossing P. Growth differentiation factor-15 and fibroblast growth factor-23 are associated with mortality in type 2 diabetes – An observational follow-up study. PLoS ONE. 2018;13(4):e0196634. https://doi.org/10.1371/journal.pone.0196634.


Google Scholar
 

Januzzi JL, Mohebi R, Liu Y, Sattar N, Heerspink HJL, Tefera E, Vaduganathan M, Butler J, Yavin Y, Li J, Pollock CA, Perkovic V, Neal B, Hansen MK. Cardiorenal Biomarkers, Canagliflozin, and outcomes in diabetic kidney disease: the CREDENCE trial. Circulation. 2023;148(8):651–60. https://doi.org/10.1161/CIRCULATIONAHA.123.065251.


Google Scholar
 

Shora HA, El-Deen IM, El-Lithy NM, Abo-Elmatty DM, Khirallah SM. Growth differentiation factor-15: A marker for diabetic kidney disease in patients with metabolic-associated fatty liver disease. J Diabetes Complications. 2025;39(6):109037. https://doi.org/10.1016/j.jdiacomp.2025.109037.


Google Scholar
 

Gohda T, Kamei N, Tanaka M, Furuhashi M, Sato T, Kubota M, Sanuki M, Koshida T, Hagiwara S, Suzuki Y, Murakoshi M. Association of difference between eGFR from Cystatin C and creatinine and serum GDF-15 with adverse outcomes in diabetes mellitus. J Cachexia Sarcopenia Muscle. 2025;16(4):e70011. https://doi.org/10.1002/jcsm.70011.


Google Scholar
 

Falkowski B, Rogowicz-Frontczak A, Szczepanek-Parulska E, Krygier A, Wrotkowska E, Uruska A, Araszkiewicz A, Ruchala M, Zozulinska-Ziolkiewicz D. Novel biochemical markers of neurovascular complications in type 1 diabetes patients. J Clin Med. 2020;9(1). https://doi.org/10.3390/jcm9010198.

Zhu X, Zhang Y, Liang F, Yin J, Jiang L, Cai W, Lu J, Zhang C, Xiao Y, Teng H, Ge W, Hu Y, Lu Y, Su J, Zhang J, Wu M. Relationship between plasma growth differentiation factor 15 levels and complications of type 2 diabetes mellitus: A Cross-sectional study. Can J Diabetes. 2023;47(2):117–e123117. https://doi.org/10.1016/j.jcjd.2022.09.116.


Google Scholar
 

Zou LX, Hou ZL, Qian CH, Wang X, Sun L. Performance of novel biomarkers for prediction of diabetic kidney disease in patients with diabetes mellitus. Ann Med. 2025;57(1):2562996. https://doi.org/10.1080/07853890.2025.2562996.


Google Scholar
 

Iglesias P, Silvestre RA, Diez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine. 2023;81(3):419–31. https://doi.org/10.1007/s12020-023-03377-9.


Google Scholar
 

Mazagova M, Buikema H, van Buiten A, Duin M, Goris M, Sandovici M, Henning RH, Deelman LE. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am J Physiol Ren Physiol. 2013;305(9):F1249–1264. https://doi.org/10.1152/ajprenal.00387.2013.


Google Scholar
 

Kim YI, Shin HW, Chun YS, Park JW. CST3 and GDF15 ameliorate renal fibrosis by inhibiting fibroblast growth and activation. Biochem Biophys Res Commun. 2018;500(2):288–95. https://doi.org/10.1016/j.bbrc.2018.04.061.


Google Scholar
 

von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Kohler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 suppresses puromycin aminonucleoside-Induced podocyte injury by reducing Endoplasmic reticulum stress and glomerular inflammation. Cells. 2024;13(7). https://doi.org/10.3390/cells13070637.

Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. Growth differentiation factor 15 (GDF-15) in kidney diseases. Adv Clin Chem. 2023;114:1–46. https://doi.org/10.1016/bs.acc.2023.02.003.


Google Scholar
 

Lasaad S, Crambert G. GDF15, an emerging player in renal physiology and pathophysiology. Int J Mol Sci. 2024;25(11). https://doi.org/10.3390/ijms25115956.

Lu Q, Wang WW, Zhang MZ, Ma ZX, Qiu XR, Shen M, Yin XX. ROS induces epithelial-mesenchymal transition via the TGF-beta1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp Ther Med. 2019;17(1):835–46. https://doi.org/10.3892/etm.2018.7014.


Google Scholar
 

Tuttle KR, Jones CR, Daratha KB, Koyama AK, Nicholas SB, Alicic RZ, Duru OK, Neumiller JJ, Norris KC, Rios Burrows N, Pavkov ME. Incidence of chronic kidney disease among adults with Diabetes, 2015–2020. N Engl J Med. 2022;387(15):1430–1. https://doi.org/10.1056/NEJMc2207018.


Google Scholar
 

Kaze AD, Jaar BG, Fonarow GC, Echouffo-Tcheugui JB. Diabetic kidney disease and risk of incident stroke among adults with type 2 diabetes. BMC Med. 2022;20(1):127. https://doi.org/10.1186/s12916-022-02317-0.


Google Scholar
 

Koye DN, Magliano DJ, Nelson RG, Pavkov ME. The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis. 2018;25(2):121–32. https://doi.org/10.1053/j.ackd.2017.10.011.


Google Scholar
 

Zhou Z, Liu H, Ju H, Chen H, Jin H, Sun M. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: A systematic review and dose-response meta-analysis. Eur J Intern Med. 2023;110:77–85. https://doi.org/10.1016/j.ejim.2023.01.026.


Google Scholar
 

Li T, Chen Y, Ye T, Zheng L, Chen L, Fan Y, Lin B. Association of growth differentiation factor-15 level with adverse outcomes in patients with stable coronary artery disease: A meta-analysis. Atheroscler Plus. 2022;47:1–7. https://doi.org/10.1016/j.athplu.2021.11.003.


Google Scholar
 

Ma CX, Ma XN, Guan CH, Li YD, Mauricio D, Fu SB. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022;21(1):74. https://doi.org/10.1186/s12933-022-01516-6.


Google Scholar
 

Teoh IH, Elisaus P, Schofield JD. Cardiovascular risk management in type 1 diabetes. Curr Diab Rep. 2021;21(9):29. https://doi.org/10.1007/s11892-021-01400-9.


Google Scholar
 

Wang D, Day EA, Townsend LK, Djordjevic D, Jorgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021;17(10):592–607. https://doi.org/10.1038/s41574-021-00529-7.


Google Scholar
 

Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Nadwa EH, Albogami SM, Alorabi M, Saad HM, Batiha GE. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: A hidden treasure. J Diabetes. 2022;14(12):806–14. https://doi.org/10.1111/1753-0407.13334.


Google Scholar
Â