Perkins, S. E., Alexander, L. & Nairn, J. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, 20 (2012).

Article 

Google Scholar
 

Zhao, Q. et al. Global, regional, and national burden of heatwave-related mortality from 1990 to 2019: a three-stage modelling study. PLoS Med. 21, e1004364 (2024).

Article 

Google Scholar
 

Sethi, S. S. & Vinoj, V. Urbanization and regional climate change-linked warming of Indian cities. Nat. Cities 1, 402–405 (2024).

Article 

Google Scholar
 

Huang, S. et al. Widespread global exacerbation of extreme drought induced by urbanization. Nat. Cities 1, 597–609 (2024).

Article 

Google Scholar
 

Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of urban heat Island. J. Environ. Sci. 20, 120–128 (2008).

Article 

Google Scholar
 

Zou, Z. et al. Impacts of land use/land cover types on interactions between urban heat island effects and heat waves. Build. Environ. 204, 108138 (2021).

Article 

Google Scholar
 

Ramamurthy, P. & Bou-Zeid, E. Heatwaves and urban heat islands: a comparative analysis of multiple cities. J. Geophys. Res. Atmos. 122, 168–178 (2017).

Article 

Google Scholar
 

John, J. & Rein, G. Heatwaves and firewaves: the drivers of urban wildfires in London in the summer of 2022. Fire Technol. 61, 3451–3460 (2025).

Article 

Google Scholar
 

Wang, Y., Lu, B. & Han, Z. Rapid increase of the nighttime electricity demand in Beijing due to compound heatwaves. Urban Clim. 50, 101595 (2023).

Article 

Google Scholar
 

Hoag, H. How cities can beat the heat: rising temperatures are threatening urban areas, but efforts to cool them may not work as planned. Nature 524, 402–405 (2015).

Article 

Google Scholar
 

Yang, Y. et al. Regulation of humid heat by urban green space across a climate wetness gradient. Nat. Cities. 1, 871–879 (2024).

Article 

Google Scholar
 

Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

Article 

Google Scholar
 

Qiu, G. Y., Yan, C. & Liu, Y. Urban evapotranspiration and its effects on water budget and energy balance: review and perspectives. Earth-Science Reviews 246, 104577 (2023).

Article 

Google Scholar
 

Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

Article 

Google Scholar
 

Jongen, H. J. et al. Urban water storage capacity inferred from observed evapotranspiration recession. Geophys. Res. Lett. 49, e2021GL096069 (2022).

Article 

Google Scholar
 

Eyster, H. N. & Beckage, B. Conifers may ameliorate urban heat waves better than broadleaf trees: evidence from Vancouver, Canada. Atmosphere 13, 830 (2022).

Article 

Google Scholar
 

Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

Article 

Google Scholar
 

Ahongshangbam, J. et al. Sap flow and leaf gas exchange response to drought and heatwave in urban green spaces in a Nordic city. Biogeosci. Discuss. 2023, 1–32 (2023).


Google Scholar
 

Haase, D., Haase, A. & Rink, D. Conceptualizing the nexus between urban shrinkage and ecosystem services. Landscape Urban Plann. 132, 159–169 (2014).

Article 

Google Scholar
 

Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. Discuss. 2021, 1–29 (2021).


Google Scholar
 

Brancaleoni, L. & Gerdol, R. Habitat-dependent interactive effects of a heatwave and experimental fertilization on the vegetation of an alpine mire. J. Veg. Sci.25, 427–438 (2014).

Article 

Google Scholar
 

O’sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Global Change Biol. 23, 209–223 (2017).

Article 

Google Scholar
 

Drake, J. E. et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biol. 24, 2390–2402 (2018).

Article 

Google Scholar
 

Ameye, M. et al. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytol. 196, 448–461 (2012).

Article 

Google Scholar
 

Kong, X. et al. Trees in cooler regions are more vulnerable to thermal stress: evidence from temperate poplar plantations in Northern China during the 2022 heatwaves. Agric. For. Meteorol. 356, 110181 (2024).

Article 

Google Scholar
 

Bakhtsiyarava, M. et al. Potential drivers of urban green space availability in Latin American cities. Nat. Cities. 1, 842–852 (2024).

Article 

Google Scholar
 

Winbourne, J. B. et al. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. BioScience 70, 576–588 (2020).

Article 

Google Scholar
 

Bühler, O. et al. Tree development in structural soil–an empirical below-ground in-situ study of urban trees in Copenhagen, Denmark. Plant Soil 413, 29–44 (2017).

Article 

Google Scholar
 

Meili, N. et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1. 0). Geosci. Model Dev. 13, 335–362 (2020).

Article 

Google Scholar
 

Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

Article 

Google Scholar
 

Joo, E., Zeri, M., Hussain, M. Z., DeLucia, E. H. & Bernacchi, C. J. Enhanced evapotranspiration was observed during extreme drought from Miscanthus, opposite of other crops. GCB Bioenergy 9, 1306–1319 (2017).

Article 

Google Scholar
 

Perera, R. S., Cullen, B. R. & Eckard, R. J. Growth and physiological responses of temperate pasture species to consecutive heat and drought stresses. Plants 8, 227 (2019).

Article 

Google Scholar
 

Jiang, Y. & Huang, B. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 41, 436–442 (2001).

Article 

Google Scholar
 

Zou, Z. et al. Different responses of evapotranspiration rates of urban lawn and tree to meteorological factors and soil water in hot summer in a subtropical megacity. Forests 12, 1463 (2021).

Article 

Google Scholar
 

Thienelt, T. S. & Anderson, D. E. Estimates of energy partitioning, evapotranspiration, and net ecosystem exchange of CO2 for an urban lawn and a tallgrass prairie in the Denver metropolitan area under contrasting conditions. Urban Ecosyst. 24, 1201–1220 (2021).

Article 

Google Scholar
 

Buwalda, J. & Lenz, F. Water use by European pear trees growing in drainage lysimeters. J. Hortic. Sci. 70, 531–540 (1995).

Article 

Google Scholar
 

Scharfstädt, L. et al. From oasis to desert: the struggle of urban green spaces amid heatwaves and water scarcity. Sustainability 16, 3373 (2024).

Article 

Google Scholar
 

Hilaire, R. S. et al. Efficient water use in residential urban landscapes. HortScience 43, 2081–2092 (2008).

Article 

Google Scholar
 

Ignatieva, M., Haase, D., Dushkova, D. & Haase, A. Lawns in cities: from a globalised urban green space phenomenon to sustainable nature-based solutions. Land 9, 73 (2020).

Article 

Google Scholar
 

Haase, D. et al. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43, 413–433 (2014).

Article 

Google Scholar
 

Esperon-Rodriguez, M., Power, S. A., Tjoelker, M. G., Marchin, R. M. & Rymer, P. D. Contrasting heat tolerance of urban trees to extreme temperatures during heatwaves. Urban For. Urban Greening 66, 127387 (2021).

Article 

Google Scholar
 

Bachofen, C. et al. High transpirational cooling by urban trees despite extreme summer heatwaves. Urban For. Urban Greening 107, 128819 (2025).

Article 

Google Scholar
 

Gauthey, A. et al. Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. New Phytol. 240, 19136 (2023).

Article 

Google Scholar
 

Bijoor, N. S., McCarthy, H. R., Zhang, D. & Pataki, D. E. Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst. 15, 195–214 (2012).

Article 

Google Scholar
 

McCarthy, H. R., Pataki, D. E. & Jenerette, G. D. Plant water-use efficiency as a metric of urban ecosystem services. Ecol. Appl. 21, 3115–3127 (2011).

Article 

Google Scholar
 

Bartens, J., Day, S. D., Harris, J. R., Wynn, T. M. & Dove, J. E. Transpiration and root development of urban trees in structural soil stormwater reservoirs. Environ. Manage. 44, 646–657 (2009).

Article 

Google Scholar
 

Hayat, M., Xu, X. & Liu, R. Hydroclimatic constraints on tree transpiration-induced cooling across global biomes. Geophys. Res. Lett. 52, e2024GL113551 (2025).

Article 

Google Scholar
 

Qin, L. et al. High-resolution spatio-temporal characteristics of urban evapotranspiration measured by unmanned aerial vehicle and infrared remote sensing. Build. Environ. 222, 109389 (2022).

Article 

Google Scholar
 

Potchter, O., Cohen, P. & Bitan, A. Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 26, 1695–1711 (2006).

Article 

Google Scholar
 

Nichol, J. E. High-resolution surface temperature patterns related to urban morphology in a tropical city: a satellite-based study. J. Appl. Meteorol. Climatol. 35, 135–146 (1996).

Article 

Google Scholar
 

Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081 (2018).

Article 

Google Scholar
 

Dyer, D. W., Patrignani, A. & Bremer, D. Measuring turfgrass canopy interception and throughfall using co-located pluviometers. PLoS ONE 17, e0271236 (2022).

Article 

Google Scholar
 

Ettinger, A. K. et al. Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Sci. Rep. 14, 3266 (2024).

Article 

Google Scholar
 

Bowen, I. S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27, 779 (1926).

Article 

Google Scholar
 

Perez, P., Castellvi, F., Ibanez, M. & Rosell, J. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 97, 141–150 (1999).

Article 

Google Scholar
 

Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

Article 

Google Scholar
 

Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21, 661–677 (2011).

Article 

Google Scholar
 

Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Botan. Sin. 46, 631–646 (2004).


Google Scholar
 

Granier, A. & Gross, P. Mesure du flux de sève brute dans le tronc du Douglas par une nouvelle méthode thermique. Ann. Sci. For. 44, 1–14 (1987).

Article 

Google Scholar
 

Monteith, J. L., Unsworth, M. H. & Webb, A. Principles of environmental physics. Q. J. R. Meteorol. Soc. 120, 1699 (1994).


Google Scholar
 

Phillips, N. & Oren, R. A comparison of daily representations of canopy conductance based on two conditional time-averaging methods and the dependence of daily conductance on environmental factors. Ann. Sci. For. 55, 217–235 (1998).

Article 

Google Scholar
 

Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 5, 139–143 (2016).

Article 

Google Scholar
 

Oren, R. et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

Article 

Google Scholar
 

Fang, T. et al. Experimental data from “Observed evaporative cooling of urban trees and lawns during heatwaves”. Figshare https://doi.org/10.6084/m9.figshare.30113521 (2025).