Fiest, K. M. et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology 88, 296–303 (2017).


Google Scholar
 

Begley, C. E. & Beghi, E. The economic cost of epilepsy: a review of the literature. Epilepsia 43, 3–9 (2002).


Google Scholar
 

Tavakol, S. et al. Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: from focal lesions to macroscale networks. Epilepsia 60, 593–604 (2019).


Google Scholar
 

Fiest, K. M., Birbeck, G. L., Jacoby, A. & Jette, N. Stigma in epilepsy. Curr. Neurol. Neurosci. Rep. 14, 444 (2014).


Google Scholar
 

Tellez-Zenteno, J. F., Patten, S. B., Jetté, N., Williams, J. & Wiebe, S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia 48, 2336–2344 (2007).


Google Scholar
 

Sultana, B. et al. Incidence and prevalence of drug-resistant epilepsy: a systematic review and meta-analysis. Neurology 96, 805–817 (2021).


Google Scholar
 

Kwan, P. et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069–1077 (2010).


Google Scholar
 

Engel, J. What can we do for people with drug-resistant epilepsy? The 2016 Wartenberg Lecture. Neurology 87, 2483–2489 (2016).


Google Scholar
 

Perucca, P., Bahlo, M. & Berkovic, S. F. The genetics of epilepsy. Annu. Rev. Genom. Hum. Genet. 21, 205–230 (2020).


Google Scholar
 

Qiu, Y. et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 378, 523–532 (2022).


Google Scholar
 

International League Against Epilepsy Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 55, 1471–1482 (2023).

Li, R. et al. Transcriptionally downregulated GABAergic genes associated with synaptic density network dysfunction in temporal lobe epilepsy. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-024-07054-5 (2025).

François, L. et al. Identification of gene regulatory networks affected across drug-resistant epilepsies. Nat. Commun. 15, 2180 (2024).


Google Scholar
 

Alsubhi, S. et al. Utility of genetic testing in the pre-surgical evaluation of children with drug-resistant epilepsy. J. Neurol. 271, 2503–2508 (2024).


Google Scholar
 

Li, Y. et al. Alterations in spontaneous brain activity and functional network reorganization following surgery in children with medically refractory epilepsy: a resting-state functional magnetic resonance imaging study. Front. Neurol. 8, 374 (2017).


Google Scholar
 

Larivière, S., Bernasconi, A., Bernasconi, N. & Bernhardt, B. C. Connectome biomarkers of drug-resistant epilepsy. Epilepsia 62, https://doi.org/10.1111/epi.16753 (2021).

Johnson, G. W., Doss, D. J. & Englot, D. J. Network dysfunction in pre and postsurgical epilepsy: connectomics as a tool and not a destination. Curr. Opin. Neurol. 35, 196–201 (2022).


Google Scholar
 

Shao, R. et al. Alteration in early resting‑state functional MRI activity in comatose survivors of cardiac arrest: a prospective cohort study. Crit. Care 28, 260 (2024).


Google Scholar
 

Jing, J. et al. Central vein sign and trigeminal lesions of multiple sclerosis visualised by 7T MRI. J. Neurol. Neurosurg. Psychiatry 95, 761–766 (2024).


Google Scholar
 

Hagen, J. et al. Phenomena of hypo- and hyperconnectivity in basal ganglia-thalamo-cortical circuits linked to major depression: a 7T fMRI study. Mol. Psychiatry 30, 158–167 (2025).


Google Scholar
 

Khoshkhoo, S. et al. Contribution of somatic Ras/Raf/mitogen-activated protein kinase variants in the hippocampus in drug-resistant mesial temporal lobe epilepsy. JAMA Neurol. 80, 578–587 (2023).


Google Scholar
 

Pfisterer, U. et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 11, 5038 (2020).


Google Scholar
 

Sunkin, S. M. et al. Allen brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, https://doi.org/10.1093/nar/gks1042 (2013).

Estevez-Fraga, C. et al. Genetic topography and cortical cell loss in Huntington’s disease link development and neurodegeneration. Brain 146, 4532–4546 (2023).


Google Scholar
 

Arnatkeviciute, A., Markello, R. D., Fulcher, B. D., Misic, B. & Fornito, A. Toward best practices for imaging transcriptomics of the human brain. Biol. Psychiatry 93, 391–404 (2023).


Google Scholar
 

Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).


Google Scholar
 

Williams, J. A. et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: a mendelian randomization study. JAMA Psychiatry 79, 498–507 (2022).


Google Scholar
 

Qin, L. et al. Dynamic functional connectivity and gene expression correlates in temporal lobe epilepsy: insights from hidden Markov models. J. Transl. Med. 22, 763 (2024).


Google Scholar
 

Sun, F. et al. Hippocampal gray matter volume alterations in patients with first-episode and recurrent major depressive disorder and their associations with gene profiles. BMC Psychiatry 25, 134 (2025).


Google Scholar
 

Zhu, J. et al. Transcriptomic decoding of regional cortical vulnerability to major depressive disorder. Commun. Biol. 7, 960 (2024).


Google Scholar
 

Knowles, J. K. et al. Precision medicine for genetic epilepsy on the horizon: recent advances, present challenges, and suggestions for continued progress. Epilepsia 63, 2461–2475 (2022).


Google Scholar
 

Blokland, G. A. M., de Zubicaray, G. I., McMahon, K. L. & Wright, M. J. Genetic and environmental influences on neuroimaging phenotypes: a meta-analytical perspective on twin imaging studies. Twin Res. Hum. Genet. 15, 351–371 (2012).


Google Scholar
 

Arnatkeviciute, A., Fulcher, B. D. & Fornito, A. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367 (2019).


Google Scholar
 

Li, J. et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. 12, 1647 (2021).


Google Scholar
 

Menon, V. 20 years of the default mode network: a review and synthesis. Neuron 111, 2469–2487 (2023).


Google Scholar
 

Li, Q. et al. Linked patterns of symptoms and cognitive covariation with functional brain controllability in major depressive disorder. EBioMedicine 106, 105255 (2024).


Google Scholar
 

Jiang, L. et al. Multimodal covariance network reflects individual cognitive flexibility. Int. J. Neural Syst. 34, 2450018 (2024).


Google Scholar
 

Sun, C.-C. et al. Modified constraint-induced movement therapy enhances cortical plasticity in a rat model of traumatic brain injury: a resting-state functional MRI study. Neural Regen. Res. 18, 410–415 (2023).


Google Scholar
 

Luo, G. et al. Abnormal ReHo and ALFF values in drug-naïve depressed patients with suicidal ideation or attempts: evidence from the REST-meta-MDD consortium. Prog. Neuropsychopharmacol. Biol. Psychiatry 136, 111210 (2024).


Google Scholar
 

Qin, Y. et al. Rhythmic network modulation to thalamocortical couplings in epilepsy. Int. J. Neural Syst. 30, 2050014 (2020).


Google Scholar
 

Li, R. et al. Epileptic discharge related functional connectivity within and between networks in benign epilepsy with centrotemporal spikes. Int. J. Neural Syst. 27, 1750018 (2017).


Google Scholar
 

Akyuz, E., Arulsamy, A., Hasanli, S., Yilmaz, E. B. & Shaikh, M. F. Elucidating the visual phenomena in epilepsy: a mini review. Epilepsy Res. 190, 107093 (2023).


Google Scholar
 

Wang, K. et al. Vagus nerve stimulation balanced disrupted default-mode network and salience network in a postsurgical epileptic patient. Neuropsychiatr. Dis. Treat. 12, 2561–2571 (2016).


Google Scholar
 

Bacon, E. J. et al. Functional and effective connectivity analysis of drug-resistant epilepsy: a resting-state fMRI analysis. Front. Neurosci. 17, 1163111 (2023).


Google Scholar
 

Widjaja, E., Zamyadi, M., Raybaud, C., Snead, O. C. & Smith, M. L. Impaired default mode network on resting-state FMRI in children with medically refractory epilepsy. AJNR Am. J. Neuroradiol. 34, 552–557 (2013).


Google Scholar
 

Zhou, H.-X. et al. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. Neuroimage 206, 116287 (2020).


Google Scholar
 

Zhang, Z. et al. Longitudinal assessment of resting-state fMRI in temporal lobe epilepsy: a two-year follow-up study. Epilepsy Behav. 103, 106858 (2020).


Google Scholar
 

Dosenbach, N. U. F., Raichle, M. E. & Gordon, E. M. The brain’s action-mode network. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-024-00895-x (2025).

Englot, D. J. et al. Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 88, 925–932 (2017).


Google Scholar
 

Motelow, J. E. et al. Decreased subcortical cholinergic arousal in focal seizures. Neuron 85, 561–572 (2015).


Google Scholar
 

Englot, D. J. et al. Remote effects of focal hippocampal seizures on the rat neocortex. J. Neurosci. 28, 9066–9081 (2008).


Google Scholar
 

Sainburg, L. E. et al. Structural disconnection relates to functional changes after temporal lobe epilepsy surgery. Brain 146, 3913–3922 (2023).


Google Scholar
 

Ganos, C. et al. A neural network for tics: insights from causal brain lesions and deep brain stimulation. Brain 145, 4385–4397 (2022).


Google Scholar
 

Henshall, D. C. & Kobow, K. Epigenetics and epilepsy. Cold Spring Harb Perspect Med. 5, https://doi.org/10.1101/cshperspect.a022731 (2015).

Dhureja, M., Chaturvedi, P., Choudhary, A., Kumar, P. & Munshi, A. Molecular insights of drug resistance in epilepsy: multi-omics unveil. Mol. Neurobiol. 62, https://doi.org/10.1007/s12035-024-04220-6 (2025).

Luo, Y.-F. et al. Divergent projections of the prelimbic cortex mediate autism- and anxiety-like behaviors. Mol. Psychiatry 28, 2343–2354 (2023).


Google Scholar
 

Sun, Y. et al. TMEM74 promotes tumor cell survival by inducing autophagy via interactions with ATG16L1 and ATG9A. Cell Death Dis. 8, e3031 (2017).


Google Scholar
 

Mochel, F. et al. Variants in the SK2 channel gene (KCNN2) lead to dominant neurodevelopmental movement disorders. Brain 143, 3564–3573 (2020).


Google Scholar
 

Cho, L. T. Y. et al. An intracellular allosteric modulator binding pocket in SK2 ion channels is shared by multiple chemotypes. Structure 26 https://doi.org/10.1016/j.str.2018.02.017 (2018).

Pascual Cuadrado, D., Wierczeiko, A., Hewel, C., Gerber, S. & Lutz, B. Dichotomic hippocampal transcriptome after glutamatergic vs. GABAergic deletion of the cannabinoid CB1 receptor. Front. Synaptic Neurosci. 13, 660718 (2021).


Google Scholar
 

Gokce-Samar, Z. et al. Molecular and phenotypic characterization of the rorb-related disorder. Neurology 102, e207945 (2024).


Google Scholar
 

Vuong, C. K. et al. Rbfox1 regulates synaptic transmission through the inhibitory neuron-specific vSNARE Vamp1. Neuron 98, https://doi.org/10.1016/j.neuron.2018.03.008 (2018).

Ma, M.-G. et al. RYR2 mutations are associated with benign epilepsy of childhood with centrotemporal spikes with or without arrhythmia. Front. Neurosci. 15, 629610 (2021).


Google Scholar
 

Wang, S. et al. A novel BCL11A polymorphism influences gene expression, therapeutic response and epilepsy risk: a multicenter study. Front. Mol. Neurosci. 15, 1010101 (2022).


Google Scholar
 

Hein, R. F. C. et al. R-SPONDIN2+ mesenchymal cells form the bud tip progenitor niche during human lung development. Dev. Cell 57, https://doi.org/10.1016/j.devcel.2022.05.010 (2022).

Chen, Y., Xu, C., Harirforoosh, S., Luo, X. & Wang, K.-S. Analysis of PTPRK polymorphisms in association with risk and age at onset of Alzheimer’s disease, cancer risk, and cholesterol. J. Psychiatr. Res. 96, 65–72 (2018).


Google Scholar
 

Johannesen, K. M. et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain 145, 2991–3009 (2022).


Google Scholar
 

Yang, N. et al. Antioxidants targeting mitochondrial oxidative stress: promising neuroprotectants for epilepsy. Oxid. Med. Cell Longev. 2020, 6687185 (2020).


Google Scholar
 

Liu, H. et al. Prohibitin 1 regulates mtDNA release and downstream inflammatory responses. EMBO J. 41, e111173 (2022).


Google Scholar
 

Fulton, R. E. et al. Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response. Neurobiol. Dis. 158, 105470 (2021).


Google Scholar
 

Skwarzynska, D., Sun, H., Williamson, J., Kasprzak, I. & Kapur, J. Glycolysis regulates neuronal excitability via lactate receptor, HCA1R. Brain 146, 1888–1902 (2023).


Google Scholar
 

Kumar, A. et al. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep. 36, 109701 (2021).


Google Scholar
 

Qiao, Y.-N. et al. Ketogenic diet-produced β-hydroxybutyric acid accumulates brain GABA and increases GABA/glutamate ratio to inhibit epilepsy. Cell Discov. 10, 17 (2024).


Google Scholar
 

Rho, J. M. & Boison, D. The metabolic basis of epilepsy. Nat. Rev. Neurol. 18, 333–347 (2022).


Google Scholar
 

Cai, J. et al. Assessing the causal association between human blood metabolites and the risk of epilepsy. J. Transl. Med. 20, 437 (2022).


Google Scholar
 

Pugacheva, E. M. et al. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol. 25, 40 (2024).


Google Scholar
 

Păun, O. et al. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev. 37, 218–242 (2023).


Google Scholar
 

Li, L., Miao, W., Huang, M., Williams, P. & Wang, Y. Integrated genomic and proteomic analyses reveal novel mechanisms of the methyltransferase SETD2 in renal cell carcinoma development. Mol. Cell Proteom. 18, 437–447 (2019).


Google Scholar
 

Du, X., Wang, Y., Wang, X., Tian, X. & Jing, W. Neural circuit mechanisms of epilepsy: maintenance of homeostasis at the cellular, synaptic, and neurotransmitter levels. Neural Regen. Res. 21, 455–465 (2026).


Google Scholar
 

Xiong, H., Tang, F., Guo, Y., Xu, R. & Lei, P. Neural circuit changes in neurological disorders: evidence from in vivo two-photon imaging. Ageing Res. Rev. 87, 101933 (2023).


Google Scholar
 

Wu, Z. et al. FAM69C functions as a kinase for eIF2α and promotes stress granule assembly. EMBO Rep. 24, e55641 (2023).


Google Scholar
 

Kelvington, B. A. & Abel, T. hnRNPH2 gain-of-function mutations reveal therapeutic strategies and a role for RNA granules in neurodevelopmental disorders. J. Clin. Investig. 133, https://doi.org/10.1172/JCI171499 (2023).

Kiebler, M. A. & Bauer, K. E. RNA granules in flux: dynamics to balance physiology and pathology. Nat. Rev. Neurosci. 25, 711–725 (2024).


Google Scholar
 

Zaidi, D. et al. Forebrain Eml1 depletion reveals early centrosomal dysfunction causing subcortical heterotopia. J. Cell Biol. 223, https://doi.org/10.1083/jcb.202310157 (2024).

Bojja, S. L. et al. Metformin ameliorates the status epilepticus-induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology 29, 137–151 (2021).


Google Scholar
 

Wang, X., Hu, Y. & Xu, R. The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen. Res. 19, 800–806 (2024).


Google Scholar
 

Sharma, D., Wangoo, N. & Sharma, R. K. Ultrasensitive NIR fluorometric assay for inorganic pyrophosphatase detection via Cu2+-PPi interaction using bimetallic Au-Ag nanoclusters. Anal. Chim. Acta 1305, 342584 (2024).


Google Scholar
 

Tong, X. et al. TRPM7 contributes to pyroptosis and its involvement in status epilepticus. J. Neuroinflam. 21, 315 (2024).


Google Scholar
 

Kong, Z., Jiang, J., Deng, M., Deng, M. & Wu, H. Improving epilepsy management by targeting P2 × 7 receptor with ROS/electric responsive nanomicelles. J. Nanobiotechnol. 23, 332 (2025).


Google Scholar
 

Schwer, B. et al. Tandem inactivation of inositol pyrophosphatases Asp1, Siw14, and Aps1 illuminates functional redundancies in inositol pyrophosphate catabolism in fission yeast. mBio 16, e0038925 (2025).


Google Scholar
 

Lankinen, K. et al. Cortical depth profiles of auditory and visual 7 T functional MRI responses in human superior temporal areas. Hum. Brain Mapp. 44, 362–372 (2023).


Google Scholar
 

Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).


Google Scholar
 

Mehta, K. et al. XCP – D: A robust pipeline for the post – processing of fMRI data. Imaging Neurosci (Camb). 2, imag – 2 – 00257 (2024).

Ciric, R. et al. Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc. 13, 2801–2826 (2018).


Google Scholar
 

Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. Neuroimage 23, S189–S195 (2004).


Google Scholar
 

Markello, R. D. et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Elife 10, https://doi.org/10.7554/eLife.72129 (2021).

Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).


Google Scholar
 

Colombani, C. et al. A comparison of partial least squares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle. J. Dairy Sci. 95, 2120–2131 (2012).


Google Scholar
 

Romero-Garcia, R. et al. Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes. Biol. Psychiatry 88, 248–259 (2020).


Google Scholar
 

Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl. Acad. Sci. USA 116, 9604–9609 (2019).


Google Scholar
 

Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).


Google Scholar
 

Mao, H. Decoding of regional cortical vulnerability to drug-resistant epilepsy using 7T MRI. OSF https://doi.org/10.17605/OSF.IO/6SGWV (2025).