Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D. 78, 074033 (2008).

Article 
ADS 

Google Scholar
 

Akamatsu, Y. & Yamamoto, N. Chiral plasma instabilities. Phys. Rev. Lett. 111, 052002 (2013).

Article 
ADS 

Google Scholar
 

Akamatsu, Y. & Yamamoto, N. Chiral Langevin theory for non-Abelian plasmas. Phys. Rev. D. 90, 125031 (2014).

Article 
ADS 

Google Scholar
 

Shovkovy, I. A. in Peter Suranyi 87th Birthday Festschrift A Life in Quantum Field Theory (eds Argyres, P. et al.) 291–316 (World Scientific, 2023).

Boyarsky, A., Fröhlich, J. & Ruchayskiy, O. Self-consistent evolution of magnetic fields and chiral asymmetry in the early universe. Phys. Rev. Lett. 108, 031301 (2012).

Article 
ADS 

Google Scholar
 

Yamamoto, N. Chiral transport of neutrinos in supernovae: neutrino-induced fluid helicity and helical plasma instability. Phys. Rev. D 93, 065017 (2016).

Article 
ADS 
MathSciNet 

Google Scholar
 

Most, E. R. Impact of a mean field dynamo on neutron star mergers leading to magnetar remnants. Phys. Rev. D 108, 123012 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Hirono, Y., Kharzeev, D. E. & Yin, Y. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly. Phys. Rev. D 92, 125031 (2015).

Article 
ADS 

Google Scholar
 

Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

Article 

Google Scholar
 

Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Zhang, N. et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl Acad. Sci. USA 117, 11337–11343 (2020).

Article 
ADS 

Google Scholar
 

Nishida, Y. Chiral light amplifier with pumped Weyl semimetals. Phys. Rev. Lett. 130, 096903 (2023).

Article 
ADS 

Google Scholar
 

Kusunose, H., Kishine, J. -i & Yamamoto, H. M. Emergence of chirality from electron spins, physical fields, and material-field composites. Appl. Phys. Lett. 124, 260501 (2024).

Article 
ADS 

Google Scholar
 

Inda, A., Oiwa, R., Hayami, S., Yamamoto, H. M. & Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 160, 184117 (2024).

Article 
ADS 

Google Scholar
 

Chen, Y., Wu, S. & Burkov, A. A. Axion response in Weyl semimetals. Phys. Rev. B 88, 125105 (2013).

Article 
ADS 

Google Scholar
 

Ma, J. & Pesin, D. A. Chiral magnetic effect and natural optical activity in metals with or without weyl points. Phys. Rev. B 92, 235205 (2015).

Article 
ADS 

Google Scholar
 

Zhong, S., Moore, J. E. & Souza, I. Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116, 077201 (2016).

Article 
ADS 

Google Scholar
 

Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).

Article 
ADS 

Google Scholar
 

Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 8, 954 (2017).

Article 
ADS 

Google Scholar
 

Caldwell, R. S. & Fan, H. Y. Optical properties of tellurium and selenium. Phys. Rev. 114, 664–675 (1959).

Article 
ADS 

Google Scholar
 

Dekorsy, T., Auer, H., Bakker, H. J., Roskos, H. G. & Kurz, H. THz electromagnetic emission by coherent infrared-active phonons. Phys. Rev. B 53, 4005–4014 (1996).

Article 
ADS 

Google Scholar
 

Tani, M. et al. Terahertz radiation from coherent phonons excited in semiconductors. J. Appl. Phys. 83, 2473–2477 (1998).

Article 
ADS 

Google Scholar
 

Johnston, M. B., Whittaker, D. M., Corchia, A., Davies, A. G. & Linfield, E. H. Simulation of terahertz generation at semiconductor surfaces. Phys. Rev. B 65, 165301 (2002).

Article 
ADS 

Google Scholar
 

Shan, J., Weiss, C., Wallenstein, R., Beigang, R. & Heinz, T. Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces. Opt. Lett. 26, 849–851 (2001).

Article 
ADS 

Google Scholar
 

Barkhuijsen, H., de Beer, R., Bovée, W. & van Ormondt, D. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61, 465–481 (1985).

ADS 

Google Scholar
 

Led, J. J. & Gesmar, H. Application of the linear prediction method to NMR spectroscopy. Chem. Rev. 91, 1413–1426 (1991).

Article 

Google Scholar
 

Huang, Y. et al. Nonthermal bonding origin of a novel photoexcited lattice instability in SnSe. Phys. Rev. Lett. 131, 156902 (2023).

Article 
ADS 

Google Scholar
 

Torrie, B. Raman spectrum of tellurium. Solid State Commun. 8, 1899–1901 (1970).

Article 
ADS 

Google Scholar
 

Tanuma, S. The effect of thermally produced lattice defects on the electrical properties of tellurium. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 6, 159–171 (1954).


Google Scholar
 

Couder, Y., Hulin, M. & Thomé, H. Cyclotron resonance in tellurium. Phys. Rev. B 7, 4373–4385 (1973).

Article 
ADS 

Google Scholar
 

Betbeder-Matibet, O. & Hulin, M. Semi-empirical model for the valence band structure of tellurium. Phys. Status Solidi B 36, 573–586 (1969).

Article 
ADS 

Google Scholar
 

Tani, T. & Tanaka, S. Pressure effect on the impurity state and impurity conduction in tellurium. In The Physics of Selenium and Tellurium: Proc. International Conference on the Physics of Selenium and Tellurium (eds Gerlach, E. & Grosse, P.) 142–152 (Springer, 1979).

Natori, K., Ando, T., Tsukada, M., Nakao, K. & Uemura, Y. The acceptor states in tellurium. J. Phys. Soc. Jpn. 34, 1263–1270 (1973).

Article 
ADS 

Google Scholar
 

Hardy, D., Rigaux, C., Vieren, J. P. & Hau, N. H. Impurities and intervalence band magneto-optical transitions in tellurium. Phys. Status Solidi B 47, 643–653 (1971).

Article 
ADS 

Google Scholar
 

Shinno, H., Yoshizaki, R., Tanaka, S., Doi, T. & Kamimura, H. Conduction band structure of tellurium. J. Phys. Soc. Jpn 35, 525–533 (1973).

Article 
ADS 

Google Scholar
 

Jnawali, G. et al. Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets. Nat. Commun. 11, 3991 (2020).

Article 

Google Scholar
 

Dressel, M., Grüner, G. Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge Univ. Press, 2002).

Book 

Google Scholar
 

Bottom, V. E. The Hall effect and electrical resistivity of tellurium. Science 115, 570–571 (1952).

Article 
ADS 

Google Scholar
 

Madelung, O. Semiconductors—Basic Data (Springer Science & Business Media, 2012).

Huang, K. On the interaction between the radiation field and ionic crystals. Proc. R. Soc. Lond. Ser. A 208, 352–365 (1951).

Article 
ADS 

Google Scholar
 

Amitani, T. & Nishida, Y. Dynamical chiral magnetic current and instability in Weyl semimetals. Phys. Rev. B 107, 014302 (2023).

Article 
ADS 

Google Scholar
 

Tutihasi, S., Roberts, G., Keezer, R. & Drews, R. Optical properties of tellurium in the fundamental absorption region. Phys. Rev. 177, 1143 (1969).

Article 
ADS 

Google Scholar
 

Hopkins, M. et al. Temperature dependence of the cyclotron-resonance linewidth in GaAs-Ga1−x AlxAs heterojunctions. Phys. Rev. B 39, 13302 (1989).

Article 
ADS 

Google Scholar
 

He, W.-Y. & Law, K. T. Magnetoelectric effects in gyrotropic superconductors. Phys. Rev. Res. 2, 012073 (2020).

Article 

Google Scholar
 

Anastassakis, E. M. in Dynamical Properties of Solids Vol. 4 (eds Horton, G. W. & Maradudin, A. A.) 357 (Elsevier, 1980).

Li, J. J., Chen, J., Reis, D. A., Fahy, S. & Merlin, R. Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons. Phys. Rev. Lett. 110, 047401 (2013).

Article 
ADS 

Google Scholar
 

O’Mahony, S. M. et al. Ultrafast relaxation of symmetry-breaking photo-induced atomic forces. Phys. Rev. Lett. 123, 087401 (2019).

Article 
ADS 

Google Scholar
 

Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

Article 
ADS 

Google Scholar
 

Ma, J. et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect. Nat. Commun. 13, 5425 (2022).

Article 
ADS 

Google Scholar
 

Chen, J. et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 8, eabn3837 (2022).

Article 

Google Scholar
 

Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

Article 
ADS 

Google Scholar
 

Suárez-Rodríguez, M. et al. Odd nonlinear conductivity under spatial inversion in chiral tellurium. Phys. Rev. Lett. 132, 046303 (2024).

Article 
ADS 

Google Scholar
 

Nomura, K. C. Optical activity in tellurium. Phys. Rev. Lett. 5, 500–501 (1960).

Article 
ADS 

Google Scholar
 

Rinkel, P., Lopes, P. L. S. & Garate, I. Signatures of the chiral anomaly in phonon dynamics. Phys. Rev. Lett. 119, 107401 (2017).

Article 
ADS 

Google Scholar
 

Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

Article 

Google Scholar
 

Ooguri, H. & Oshikawa, M. Instability in magnetic materials with a dynamical axion field. Phys. Rev. Lett. 108, 161803 (2012).

Article 
ADS 

Google Scholar
 

Planken, P. C., Nienhuys, H.-K., Bakker, H. J. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. JOSA B 18, 313–317 (2001).

Article 
ADS 

Google Scholar
 

Ropagnol, X. et al. Efficient terahertz generation and detection in cadmium telluride using ultrafast ytterbium laser. Appl. Phys. Lett. 117, 181101 (2020).

Article 
ADS 

Google Scholar
 

Huang, Y. & Mahmood, F. Data for observation of a dynamic magneto-chiral instability in photoexcited tellurium. Illinois Data Bank https://doi.org/10.13012/B2IDB-1409842_V3 (2025).